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Abstract 
Proton pump inhibitors (PPIs) are a class of drugs used for the treatment of acid-related diseases by inhibiting gastric acid 

secretion. Although PPIs are considered safe and clinically beneficial in the short term, mounting evidence raises safety 

concerns about the long-term use of PPIs. Alzheimer’s disease (AD) is the most common form and cause of dementia and 

one of the biggest public health challenges among neurodegenerative diseases in the elderly, with no effective treatment to 

date. In recent years, there have been conflicting studies in patients receiving long-term PPIs regarding the risk of dementia, 

and in particular, AD. Some studies showed a strong positive relationship between PPIs and their impact on dementia and 

AD. We performed an in-depth review and analysis of existing studies and performed some docking to investigate the 

interaction between PPIs and dementia, AD-associated proteins, enzymes, and receptors. This study aims to provide 

possible new insights about the long-term safety of PPI employment and eventual cognitive impairment leading to dementia 

and later AD. 

Keywords: proton pump inhibitors, dementia, Alzheimer’s disease, GABAA receptor, M1 muscarinic acetylcholine receptor, 

AMP-activated protein kinase 

 

Abbreviations: PPIs: proton pump inhibitors, AD: Alzheimer’s disease, AMPK: AMP-activated protein kinase, M1 mAChR: 

M1 muscarinic acetylcholine receptor, CNS: central nervous system, CKD: chronic kidney disease, AIN: acute interstitial 

nephritis, AKI: acute kidney injury, H2RA: H2 receptor antagonist, eGFR: estimated glomerular filtration rate, ESRD: end-

stage renal disease, BBB: blood-brain barrier, APP: amyloid precursor protein, BACE1: β-site APP-cleaving enzyme 1, AICD: 

APP intracellular domain, iGSMs: inverse γ-secretase modulators, VPP: vacuolar proton pumps, tTG: tissue 

transglutaminase, NFTs: neurofibrillary tangles, PHFs: paired helical filaments, PP2A: protein phosphatase 2A, AChE: 

acetylcholinesterase, ChAT: choline acetyltransferase, PKC: protein kinase C, ACh: acetylcholine 

 

 

 

1. Introduction 

One of the most studied potential adverse effects of 

the long-term use of proton pump inhibitors (PPIs) is 

dementia [1]. An early and large epidemiological 

study based on the German ageing, cognition, and 

dementia databases showed a significantly elevated 

risk of developing dementia in patients exposed to 

long-term PPI therapy [2]. A subsequent study 

conducted on a longitudinal sample of elderly patients 

from the largest German statutory health insurer also 

showed an increased risk of developing dementia 

compared with patients not exposed to PPIs [3]. 
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A weak but significantly increased risk of non-AD 

dementia was observed among PPI users in a 

community-based retrospective cohort study 

conducted in the Catalan Health Service (CatSalut) 

system from 1st January 2002 to 31st December 2015. 

Although a higher dose of PPIs was not associated 

with an increased risk of either Alzheimer’s disease 

(AD) or non-AD dementias, an increased risk of both 

AD and non-AD dementias was observed in users of 

two types of PPI in the above-mentioned 13 years of 

community-based data compared with those who 

employed only one type [4]. 

Conversely, a few recent meta-analyses and 

systematic reviews have concluded that there was no 

statistically significant association between PPI use 

and risk of dementia or AD (P >.05) [106–108]. 

However, these controversial findings claimed that 

distinct PPIs may have a potential role in the 

progression of cognitive disorders. 

Despite these studies, the bioinformatics-based 

evidence from our current study led us to explore the 

relationship between PPIs and AD as well as non-AD 

dementias. In particular, we aimed to review the 

relationship between PPI use and the basic 

mechanisms of neuronal dysfunction. In this regard, 

we discuss whether PPI utilization is associated with 

greater susceptibility to developing dementia, 

focusing on the neurobiological basis of AD. 

Consequently, we propose a novel hypothesis 

regarding the physio-pathological mechanisms of 

cognitive impairment induced by acute and chronic 

PPI use and examine some associated factors that can 

increase dementia susceptibility after PPI exposure. 

1.1 Limitations 

Our review has certain limitations, such as the study 

being confined only to bioinformatics. These 

bioinformatic analyses were performed based on 

earlier evidence, and therefore, it is reliable to conduct 

some wet lab experiments as per our current findings. 

Some earlier studies that contradict facts can be 

better proven with wet lab experiments. This study 

has limitations because it shows the silico interactions 

between the drug and protein, but whether it's truly 

possible in vivo needs further studies, keeping this 

information as the base. 

2. Methodology for Docking Study 

The structures of proteins and ligands were 

downloaded from websites https://www.rcsb.org/ and 

https://pubchem.ncbi.nlm.nih.gov/. AutoDock Tool 

(ATD) 1.5.6 was utilized for this study. The AutoDock 

Vina 1.0 software automatically computed Gasteiger 

charges, merged non-polar hydrogens, and autodock 

type to each atom. Then torsions were defined, which 

showed rotatable and non-rotatable bonds in the 

ligand. Finally, results were saved in the pdbqt file 

format (Figures 1 and 2). AutoDock Vina software was 

run using the Windows command prompt. All the 

program files, ligand [.pdbqt], protein [.pdbqt], and 

configuration files [.conf] were saved in the same 

folder. The computation was performed in the same 

folder as log.txt and ligand_out.pdbqt. Log.txt file 

showed the binding energy of the ligand to the protein 

and ligand_out.pdbqt file revealed sites on the 

proteins with binding energy. The output [.pdbqt] files 

obtained from the docking study were used to evaluate 

the hydrophobic interaction of the ligand with the 

protein. The results were then processed with 

Chimaera software version 1.8 for the creation of 

copies of the protein as well as the ligand. This was 

followed by an assessment of interactions between 

protein and ligand by using LigPlot+ version 1.4.5 [5–

8]. 

3. Determination of Grid Box Size 

The grid box should enclose the known binding site. It 

should be large enough to accommodate the largest 

ligand under consideration. It should provide enough 

room for flexible residues to manoeuvre. If the binding 

site on the receptor is known, then a smaller grid box 

will help in the reduction of docking time and increase 

the accuracy. The figure explains the procedure we 

adapted to fix the grid box size and to note the values. 

These values were used to run AutoDock Vina (Figure 

3). 

 

 
Figure 1: Detailed procedure for preparation of the .pdbqt file is shown. 
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Figure 2: Detailed procedure for preparation of the .pdbqt file is shown. 

 

 
Figure 3: Determination of grid box size. 

 

4. Results 

4.1 PPI interaction with GABAA receptor 

Comparative analysis of the binding ability of 

benzodiazepines and PPI to GABAA R showed that 

PPI binds to GABAA R in an almost similar fashion 

with high affinity and lower binding energy compared 

to benzodiazepines, and more hydrophobic 

interactions that increase the chances of easy binding. 

Therefore, it can be assumed that PPI may activate 

GABAA R, similar to benzodiazepines. Consequently, 

PPI may lead to neuronal degeneration, possibly 

causing dementia or AD (Table 1 and Figure 4). 

4.2 PPI interaction with AMP-activated protein 

kinase 

PPIs such as (R)-(+)-pantoprazole, esomeprazole, 

lansoprazole, (R)-omeprazole, (R)-tenatoprazole, and 

(S)-tenatoprazole bind to AMP-activated protein 

kinase (AMPK) with less energy compared to the 

known inhibitor (dorsomorphin) of AMPK. Interaction 

bonds contain the number of amino acids with 

hydrogen bonding and hydrophobic bonding. The data 

have shown the lowest level of energy in the binding 

site. Thus, PPI can be a potential inhibitor of AMPK, 

and its long-term use may keep inhibiting AMPK for 
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the long term and thus may allow AD or dementia 

development (Table 2 and Figure 5). 

 

Complex with GABA(A) 

receptor 

Energy (Kcal/mol) Interaction bonds 

Hydrogen bonding Hydrophobic bonding 

(R)-(+)-Pantoprazole -8.1 -- 

Thr87, Phe77, Arg65, 

Leu76, Tyr61, Phe62, 

Gly58 

Esomeprazole -8.5 -- 
Gly58, Thr87, Arg65, 

Tyr61, Leu76, Phe62 

Lansoprazole -8.8 -- 
Leu76, Tyr61, Arg65, 

Phe62, Gly58, Thr87 

(R)-Omeprazole -8.5 -- 
Phe62, Thr87, Leu76, 

Tyr61, Arg65, Gly58 

(R)-Tenatoprazole -8.6 -- 
Phe62, Gly58, Tyr61, 

Arg65, Leu76, Thr87 

(S)-Tenatoprazole -8.6 -- 
Gly58, Thr87, Leu76, 

Tyr61, Arg65, Phe62 

Benzodiazepine -6.6 Leu76 (2.91 A° & 2.88 A°) 
Phe77, Thr87, Arg65, 

Tyr61 
Table 1: Protein ligand interactions for 1GNU. 
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Figure 4: PPI Interaction with GABAA receptor. 

 

Complex with AMPK Energy (Kcal/mol) Interaction bonds 

Hydrogen bonding Hydrophobic bonding 

(R)-(+)-Pantoprazole -8.1 Val96 (3.12 A°) 
Tyr95, Leu146, Glu94, 

Met93, Ile77, Leu22 

Esomeprazole -8.1 Val96 (3.15 A°) 
Tyr95, Glu94, Met93, 

Ile77, Leu22 

Lansoprazole -9.5 
Val96 (2.95 A°, 3.00 A°, 

3.15 A°) 

Tyr95, Glu94, Ile77, 

Met93, Leu22 

(R)-Omeprazole -8.2 -- 

Leu146, Val96, Leu22, 

Gly25, Ser161, Asn162, 

Lys45, Val30, Ala43, 

Ile77, Tyr95, Glu94 

(R)-Tenatoprazole -8.3 Val96 (3.17 A°) 

Gly23, Asn162, Val30, 

Lys45, Glu94, Tyr95, 

Ile77, Gly25, Val24 

(S)-Tenatoprazole -8.3 Val96 (3.18 A°) 

Gly25, Asn162, Lys45, 

Glu94, Ile77, Tyr95, 

Val30, Gly23, Val24 

Dorsomorphin -1.1 -- Pro213, Phe214, Val202 
Table 2: Protein ligand interactions for 6BX6. 
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Figure 5: PPI interaction with AMPK. 

4.3 PPI interaction with M1 muscarinic 

acetylcholine receptor 

Benztropine is a known inhibitor of M1 muscarinic 

acetylcholine receptor (M1 mAChR). It shows a 

binding energy of -9.0 and a few hydrophobic bonds 

with no hydrogen bonds. Whereas, PPI shows 

interaction bonds of amino acids with hydrogen 

bonding and hydrophobic bonding, along with a 

binding energy lower than benztropine. These data 

indicate the lowest level of energy in the binding site, 

and thus, PPI can efficiently bind to M1 mAChR and 

inhibit it as benztropine (Table 3 and Figure 6). 

 

Complex with M1 

muscarinic acetylcholine 

receptor 

Energy (Kcal/mol) Interaction bonds 

Hydrogen bonding Hydrophobic bonding 

(R)-(+)-Pantoprazole -9.5 -- 

Thr192, Trp157, Tyr106, Tyr404, 

Ser109, Asp105, Cys407, Tyr408, 

Trp378, Asn382, Ala196, Phe197, 

Ala193 

Esomeprazole -10.2 -- 

Asn382, Phe197, Ala193, Ser109, 

Trp378, Tyr408, Cys407, Tyr404, 

Tyr106, Tyr381, Ala196, Thr192 

Lansoprazole -10.6 Tyr106 (3.11 A°) 
Asn382, Tyr381, Trp378, Ser109, 

Cys407, Tyr408, Tyr404, Asp105 

(R)-Omeprazole -9.6 -- 
Asn422, Thr366, Asn60, Phe63, 

Ile119, Leu64, Ala363, Lys362 

(R)-Tenatoprazole -9.5 Asp122 (3.00 A°& 3.10 A°) 
Glu360, Arg123, Phe63, Ile119, 

Asn60, Leu64, Val127, Ser126 
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(S)-Tenatoprazole -9.5 Asp122 (2.99 A° & 3.10 A°) 
Glu360, Arg123, Leu64, Phe63, 

Asn60, Ile119, Val127, Ser126 

Benztropine -9.0 -- 
Tyr404, Tyr85, Leu86, Glu401, 

Tyr82, Trp400 
Table 3: Protein ligand interactions for 5CXV. 

 

 

 

 
Figure 6: PPI Interaction with M1 muscarinic acetylcholine receptor (5CXV). 

4.4 Postulated mechanism linking dementia and 

PPI use 

The buildup of beta-amyloid has been implicated in 

the progression and pathogenesis of dementia 



Relationship between Neurodegenerative Diseases and Proton Pump Inhibitors Using Bioinformatics 

Volume 3 Issue 6 8 

syndromes such as AD in humans. Central nervous 

system (CNS) microglial cells use enzymes such as V-

ATPase to degrade and scavenge beta-amyloid [2]. 

Murine models suggest that PPIs interfere with the 

activity of scavenger enzymes such as V-ATPase, can 

lead to the accumulation of beta-amyloid [9]. PPIs 

have also been associated with certain chronic kidney 

disease (CKD) that may also lead to cognitive 

impairment, dementia, or AD. Further studies are 

needed to elucidate the mechanisms linking PPIs with 

dementia in humans. In the current study, we have 

considered various CNS-associated proteins by 

previous studies, such as tau aggregation and beta-

amyloid accumulation, to find what type of effects PPI 

may have on the CNS. 

4.5 Effect of PPI on chronic kidney disease and 

eventually dementia 

Kidney disease case reports have linked PPIs to acute 

interstitial nephritis (AIN) and acute kidney injury 

(AKI) since 1992. In 2016, two studies received 

widespread attention because they connected PPIs to 

an excess risk for CKD [10, 11]. Data retrieved 

retrospectively from a cohort of 10,482 patients who 

were actively followed and another larger cohort of 

249,751 patients, it was found that PPIs were 

associated with a 50% increased risk in the smaller 

cohort and a 17% increased risk for CKD in the larger 

cohort. 

Another study compared 173,321 PPI users with 

20,270 H2 receptor antagonist (H2RA) users in a VA 

dataset [11]. They included patients who had a normal 

estimated glomerular filtration rate (eGFR) at 

baseline and followed patients for up to 5 years, and 

found a 1.8% absolute annual excess risk for CKD in 

PPI users compared to H2RA users. 

These studies are thought-provoking since PPIs’ effect 

on the kidney may vary with the degree of severity 

within important comorbidity categories such as 

diabetes [9]. 

Evidence also exists that CKD is a risk factor for 

cognitive decline. Earlier studies explain that kidney 

disorder may be an important mechanism leading to 

cognitive impairment [12]. Cognitive dysfunction is a 

well-known complication of CKD [13]. AKI patients 

have a 3-fold higher risk of developing dementia 

compared with those without AKI. The association of 

AKI with dementia or death is valid in several studies 

and shows an increased risk of 60% [14]. 

How AKI may lead to cognitive dysfunction is unclear, 

but increased inflammation, oxidative stress, and 

endothelial dysfunction are all described 

complications of AKI [15–17]. In mouse models, 

ischemic AKI resulted in inflammation and functional 

changes in the brain. Specifically, compared with 

sham mice, those with AKI showed increased 

neuronal pyknosis and microgliosis in the brain [17]. 

In addition, the mice with AKI had significant 

microvascular dysfunction in the brain. Whether 

these changes occur in humans has not been 

determined, and further study is required. AKI is 

associated with long-term adverse outcomes. A 

significantly increased risk of dementia following AKI 

has been reported in patients without a previous 

history of cognitive dysfunction [13]. In a previous 

study conducted in Taiwan involving 2,905 patients, 

those with AKI had a greater risk of subsequently 

developing dementia than those without AKI, 

independent of cardiovascular risk factors [18]. PPI 

use is associated with an increased risk of AKI, 

incident CKD, and progression to end-stage renal 

disease (ESRD), ultimately leading to cognitive 

impairment [19]. 

4.6 The effect of PPIs on the central nervous 

system 

AD or dementia is caused by the deposit of beta-

amyloid and hyperphosphorylated tau protein in the 

brain of the patients, while in frontotemporal lobar 

degeneration, deposits of tau or TDP-43 can be 

characterized as Lewy body dementia, which is 

characterized by the presence of alpha-synuclein 

deposits [20–23]. 

Symptoms may be similar across different cognitive 

disorders in both the very early and late stages of the 

disease, making differential diagnosis challenging. 

However, the underlying causes of neurodegeneration 

differ in each condition. Evaluating the risk of PPIs on 

dementia and AD as a whole may provide essential 

insights into the disease. In this review, we discuss 

how PPIs may affect the CNS and contribute to 

neurodegeneration through various mechanisms. 

4.7 PPI may inhibit ATP12A/ATP1AL1 (alpha 

polypeptide) gene product 

The ATP12A/ATP1AL1 genes encode H+/K+-ATPase, 

which is expressed in the brain, colon, and placenta, 

while the ATP4A gene encodes H+/K+-ATPase in 

gastric epithelial cells. RNA blot analysis revealed 

that the colon had the highest levels of expression, 

whereas the kidney, uterus, heart, and forestomach 

had the lowest levels [109]. Moreover, this study has 

also shown the interaction of H+/K+-ATPase in gastric 

epithelial cells with rabeprazole and omeprazole [24, 

25]. A few other isoforms of the H+/K+-ATPase are 

expressed in the CNS, which maintains acid-base and 

potassium homeostasis in neurons [24, 26]. V-

ATPases are involved in both exocytosis and 

endocytosis in nerve terminals and are needed for the 

packing of neurotransmitters into synaptic vesicles by 

generating a proton gradient [27, 28]. PPIs, including 

omeprazole, lansoprazole, dexlansoprazole, 

rabeprazole, pantoprazole, and esomeprazole, bind to 

H+/K+-ATPases efficiently on the parietal cell 

membrane's luminal surface and inhibit acid secretion 

[29, 30]. Most of the PPIs react with cysteine 813, 

though the site of reaction on the enzyme differs 

according to the type of PPI [30]. Due to the homology 
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properties of P-type ATPases, PPIs can plausibly 

inhibit even other ionic pumps in the CNS and 

elsewhere. Hence, PPI may reduce pH in the brain, 

cerebrospinal fluid, and blood by inducing metabolic 

alterations. 

According to the measurement of PPI passage through 

the blood-brain barrier (BBB), up to 15% of a single 

intravenous dose of omeprazole will pass through the 

BBB and enter the CNS [31]. Repetitive long-term use 

and 15% of this drug at each dose can potentially 

become a risk for the brain and can cause cognitive 

dysfunction. Lansoprazole has also been shown (in 

vitro and in vivo) to penetrate the BBB [32]. 

Lansoprazole, esomeprazole, and pantoprazole have 

been associated with headaches, dizziness, 

nervousness, tremor, sleep disturbances, and 

depression [33–35]. There have also been reports of 

senso-perceptual abnormalities (i.e., hallucinations) 

[36] and delirium [37] in very rare cases. Although the 

exact mechanisms of action of PPI on brain circuits 

and neurological side effects are not fully understood 

[38]. PPI drugs can facilitate tau and Aβ-induced 

neurotoxicity, which may increase AD progression 

and cognitive decline. Below, we discuss the most 

relevant physiopathological mechanisms. 

4.8 PPIs and Aβ Plaques 

Dementia build-up of β-amyloid (Aβ) protein 

predisposes to AD. Microglial cells use V-type 

ATPases to degrade amyloid-β, and PPIs may block V-

ATPases to increase isoforms of amyloid-β in mice 

[39]. PPIs increase the development of Aβ plaques, 

which are one of the most well-known factors in the 

case of dementia [39]. Extracellular aggregation of Aβ 

plaques, which leads to oxidative and inflammatory 

damage in the brain, is one of the main hallmarks of 

AD. Aβ is produced through the proteolytic processing 

of a transmembrane protein, amyloid precursor 

protein (APP), by β-secretases (also known as β-site 

APP-cleaving enzyme 1 [BACE1]) and γ-secretases. 

Amyloidogenic processing of APP is carried out by the 

sequential action of membrane-bound β- and γ-

secretases. β-secretase cleaves APP into the 

membrane-tethered C-terminal fragments β (CTFβ or 

C99) and N-terminal sAPPβ. CTFβ is subsequently 

cleaved by γ-secretases into the extracellular Aβ and 

APP intracellular domain (AICD) [40]. Although the 

total number of Aβ plaques does not correlate well 

with AD severity, there is a direct effect on cognition 

and cell death in APP/tau transgenic mice because of 

neuronal loss and the astrocyte inflammatory 

response investigated the effect of PPIs on Aβ 

production using cell and animal models and 

suggested a novel hypothesis that considers PPIs as 

acting like inverse γ-secretase modulators (iGSMs), 

which change the γ-secretase cleavage site and 

thereby increase Aβ42 levels and decrease Aβ38 levels 

[39, 41]. PPIs also increase BACE1 activity, thereby 

increasing levels of Aβ37 and Aβ40. In AD, the major 

pathological species is thought to be Aβ42, but the 

most produced is Aβ40 [42]. PPIs and specifically 

lansoprazole was also noticed to alter the media pH 

responsible for amplifying the activity of other 

proteases, such as memprin-β, and generating Aβ2-37, 

Aβ2-40, and Aβ2-42 species. Moreover, Badiola et al. 

[39] were able to demonstrate that lansoprazole 

enhances Aβ production using in vivo and in vitro 

models, supporting the theory that PPIs affect AD by 

boosting Aβ production [39, 41]. PPIs inhibit vacuolar 

proton pumps (VPP) in microglia and macrophages, 

which acidifies lysosomes by pumping protons from 

the cytoplasm into the lumen of vacuoles [43, 44]. This 

acidic environment in lysosomes causes the 

degradation of fibrillary Aβ. As PPIs can cross the 

BBB, they act on V-ATPases in an inhibitory way, 

causing less degradation of fibrillary Aβ and hence a 

reduction in its clearance [31, 44]. To date, few studies 

have explained the relationship between the effects of 

PPIs and the presence of Aβ plaques. It would be 

interesting if future studies determine why Aβ plaque 

production increases or their clearance decreases with 

PPI use. Results from solid-state NMR measurements 

showed that amyloid fibril “cross β” structures are of 

two patterns: parallel and antiparallel. Tissue 

transglutaminase (tTG) causes crosslinking of Aβ 

peptides and indicates that the Aβ fibril is a hydrogen-

bonded, parallel β-sheet with the propagation long 

axis of the Aβ fibril [45]. Similar to human AD cases, 

tTG was related to Aβ depositions in these AD models. 

Evidence for an early role of tTG in Aβ pathology was 

given in an earlier study [46]. 

One of the oxidative modifications involved in 

mediating Aβ toxicity through Aβ aggregation is the 

formation of dityrosine cross-links. Several studies 

have shown that Aβ can be converted to dityrosine 

through two different biochemical pathways. One 

method is peroxidase-catalyzed cross-linked tyrosine, 

and the second method is metal-catalyzed oxidative 

tyrosyl radical formation [47–50]. At certain 

concentrations, omeprazole induced HO-1, which also 

increased H2O2 levels [51, 52]. This increased 

hydrogen peroxide due to PPI use may cause the 

formation of dityrosine cross-links, which leads to the 

formation of Aβ aggregation that ultimately leads to 

cognitive impairment or dementia, or AD. 

4.9 Role of PPI on Tau protein 

A definitive diagnosis can only be confirmed 

histopathologically by the extensive presence of Aβ 

and neurofibrillary tangles (NFTs) in the neocortex of 

post-mortem brain tissue [53]. The main component of 

NFTs is paired helical filaments (PHFs) formed from 

hyperphosphorylated tau protein [54, 55]. Tau protein 

acts as a microtubule-associated protein in neuronal 

axons, stabilizing and inducing microtubule assembly 

[56]. When tau protein is hyperphosphorylated, it 

loses its ability to bind and stabilize microtubules, 

resulting in neuron degeneration [57]. According to 

the neuro-immunomodulation hypothesis of AD, the 

earliest CNS modifications before the clinical onset of 

AD are caused by a persistent inflammatory reaction, 
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which causes excessive tau phosphorylation and 

triggers the development of PHFs and tau protein 

aggregates, eventually leading to cytoskeletal changes 

[58]. As a result, these lesions exist before the onset of 

clinical signs of AD [59]. They looked at over 2000 

compounds to find agents for PET and discovered that 

quinoline and benzimidazole are high-affinity 

components of NFTs, and not senile plaques [59]. A 

docking experiment discovered significant hydrogen 

bond interactions between the NH group of 

lansoprazole's benzimidazole ring and the tau core's 

C-terminal hexapeptide (386TDHGAE391) [58]; 

lansoprazole has high lipophilicity and can cross the 

BBB within 37 min and can reach the brain; therefore, 

it has also been used as a radiotracer for PET imaging 

[60]. Tau undergoes multiple post-translational 

changes resulting in conformational modifications in 

aggregates that alter binding affinities and binding 

sites of tau protein [60]. Lansoprazole, indeed, with its 

high affinity for tau protein, can be used to create 

noninvasive techniques for diagnosing AD in the early 

stages. This has been proven that the tau protein 

effectively binds to PPI such as lansoprazole. Thus, 

the effect of other PPIs on the tau protein and its 

affinity may also increase aggregation and stabilize 

tau aggregates. It's worth noting that TSP1 usually 

forms disulfide-linked trimers; it's unclear if proteins 

with a proclivity for multimerization are more 

sensitive to omeprazole, but direct towards further 

investigation [61]. 

The appearance of abnormal phosphorylation of the 

microtubule-associated protein tau in the brains of 

patients with AD is a key characteristic of the 

disease's development. Identification of the kinases 

involved in this mechanism, as well as the 

development of pharmacological agents to inhibit 

these molecules, has been a major focus of research. 

This analysis focuses on recent advances in tau 

phosphorylation's physiological and pathological 

effects, as well as the role of phosphorylation in tau 

toxicity and pathological progression in AD. 

Therapeutic research is being reshaped by the 

emerging understanding of tau's functions in cellular 

biology and the mechanisms by which 

phosphorylation controls tau activity [62]. 

The balance of tau kinase and phosphatase activities 

controls tau phosphorylation. This equilibrium has 

been proposed to be disrupted, which may lead to 

abnormal tau phosphorylation and hence, tau 

aggregation. Thus, identifying the potential causes of 

tau aggregate development and developing defense 

methods to deal with these lesions in AD necessitates 

a thorough understanding of tau dephosphorylating 

control modes. Stimulation of some tau phosphatases 

is one of the effective and reasonably precise 

treatments for reversing tau phosphorylation. We 

looked at tau protein phosphatases and analyzed their 

physiological functions and regulation, their function 

in tau phosphorylation, and their possible connection 

with AD in this article. We also reviewed the 

involvement of tau phosphatase, including protein 

phosphatase 2A (PP2A) [63]. 

4.10 Effect of PPI on GABAA receptor 

Findings suggest that NR2A receptor activation is 

critical in limiting tau phosphorylation by the 

PKC/GSK3 pathway, and they support the concept 

that these receptors can function as a molecular 

device to prevent neuronal cell death and a variety of 

pathological conditions. After GABAA receptor (R) 

activation, tau phosphorylation at these residues was 

elicited by a pathway requiring cdk5, resulting in 

reduced PP2A interaction with tau [64]. A reduced 

PP2A will result in increased tau phosphorylation 

that may stabilize microtubules, leading to neuron 

degeneration. Thus, hyper-activation of GABAA R 

imbalances tau’s phosphorylation state, which may 

ultimately enhance the chances of dementia or AD via 

neuronal degeneration. According to previous positive 

interactive studies of PPI with some proteins, we 

made an interaction of GABAA R with various PPI and 

compared the interaction with a well-known GABAA 

R activator. 

The binding of diazepam (benzodiazepines) to a 

specific allosteric site on GABAA R at the interface 

between α and γ subunits facilitates the inhibitory 

actions of GABA and can lead to a rapid increase in 

chloride/bicarbonate channels gating [65], which 

results in cumulative enhancement of GABA-

mediated transmission at inhibitory synapses in the 

brain. Comparative analysis of the binding ability of 

benzodiazepines and PPI to GABAA R showed that it 

binds to GABAA R in an almost similar fashion with 

high affinity, and lower binding energy compared to 

benzodiazepines (Table 1 and Figure 4) and more 

hydrophobic interactions that increase the chances of 

easy binding. Therefore, it can be concluded that PPI 

may activate GABAA R as benzodiazepines. 

Accordingly, PPI may lead to neuronal degeneration, 

causing dementia or AD. 

4.11 PPI as a potential inhibitor of AMP-activated 

protein kinase 

A study also indicated that AMPK activation reduces 

tau phosphorylation, which improves brain function 

by inhibiting GSK3β in the AD-like model. These 

findings proved that AMPK might be a novel target 

for AD treatment in the future. Thus, activation of 

AMPK can be useful for preventing AD occurrence, 

and inhibition of AMPK will be unfavorable and may 

be associated with the development of AD [66]. In the 

current study, we performed an interactive study 

between AMPK and various PPIs, and our 

bioinformatics results showed that PPIs can inhibit 

AMPK, which may accelerate tau phosphorylation. 

This can be unfavorable for neuronal development due 

to imbalanced phosphorylation of tau and activation 

of GSK3β, which phosphorylates tau. The PPIs, such 

as (R)-(+)-pantoprazole, esomeprazole, lansoprazole, 

(R)-omeprazole, (R)-tenatoprazole, (S)-tenatoprazole, 
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bind to AMPK with less energy compared to a known 

inhibitor (dorsomorphin) of AMPK [67]. Interaction 

bonds contain the number of amino acids with 

hydrogen bonding and hydrophobic bonding. The data 

has shown the lowest level of energy in the binding 

site. Thus, PPI can be a potential inhibitor of AMPK, 

and its chronic use may keep inhibiting AMPK for the 

long term and thus, may allow AD or dementia 

development (Table 2 and Figure 5). 

4.12 PPI and acetylcholinesterase and M1 

muscarinic acetylcholine receptor 

A study also suggests that acetylcholinesterase 

(AChE) and the A-beta peptide may be involved in 

physiologically relevant interactions associated with 

the pathogenesis of AD [68]. An advanced in silico 

docking analysis followed by enzymological 

assessments was performed on PPIs against the core-

cholinergic enzyme that is choline acetyltransferase 

(ChAT), which synthesizes acetylcholine (ACh). PPIs 

acted as inhibitors of ChAT, with high selectivity. 

Given that cholinergic dysfunction is a major driving 

force in dementia disorders [110]. This study 

mechanistically explains how prolonged PPI use may 

increase the incidence of dementia. Thus, prolonged 

PPI use in the elderly and patients with dementia or 

amyotrophic lateral sclerosis should be restricted. 

4.13 Role of M1 muscarinic acetylcholine 

receptor in dementia and Alzheimer’s disease: 

PPI binds M1 mAChR in an inhibitory fashion 

Aβ is an important player in AD and is derived from 

β-APP through sequential cleavages by β and γ-

secretases: APP is cleaved by β-secretase to generate 

the large secreted derivative sAPPβ and the 

membrane-bound APP C-terminal fragment-β; the 

latter can be further cleaved by γ-secretase to 

generate Aβ and AICD. Alternatively, APP can be 

cleaved by α-secretase within the Aβ domain, which 

prevents Aβ production and instead generates 

secreted sAPPα, a neuroprotective protein [69, 70]. 

Interestingly, stimulation of M1 mAChR by agonists 

has been found to enhance sAPPα generation and 

reduce Aβ production [71, 72]. Stimulation of M1 

mAChR is well-known to activate Protein kinase C 

(PKC). PKC is found to promote the activity of α-

secretase [72] and the transfer of APP from the 

Golgi/trans-Golgi network to the cell surface [73]. M1 

mAChR stimulation also activates ERK1/2, which 

modulates α-secretase activity and processing of APP 

[74], though some contradictory findings show 

opposite results [72]. In mouse AD models, M1 

mAChR promotes brain Aβ plaque pathology by 

increasing amyloidogenic APP processing in neurons 

and the brain. M1 mAChR also affects BACE1, the 

rate-limiting enzyme for Aβ generation [75, 76]. 

APP/PS1/tau triple transgenic (3×Tg) AD mice were 

treated with AF267B, a selective M1 mAChR agonist. 

It reduces BACE1 endogenous level, accompanied by 

a decreased Aβ level via an unclear mechanism, 

directly interacts with BACE1, and mediates its 

proteasomal degradation [77, 78]. However, another 

study found that stimulation of M1 mAChR 

upregulates BACE1 levels in SK-SH-SY5Y cells via 

the PKC and MAPK signaling cascades [79]. M1 

mAChR was found to induce the Wnt signaling 

pathway to counteract Aβ-induced neurotoxicity [80]. 

The involvement of M1 mAChR in AD is also 

manifested by its amelioration of tau pathology. 

Carbachol and AF102B (agonists) stimulate M1 

mAChR in two time- and dose-dependent manners 

and decrease tau phosphorylation in PC12 cells [81]. 

AF267B (M1 mAChR agonist) lessens tau pathology 

by activating PKC and inhibiting GSK-3β in 3×Tg AD 

mice [77, 82]. Activation of M1 mAChR protects 

against apoptotic factors (such as DNA damage, 

oxidative stress, caspase activation, and 

mitochondrial impairment) in human neuroblastoma 

(SH-SY5Y cells) [83]. M1 mAChR cascade counteracts 

decreased cerebral blood flow, which is a pathological 

characteristic in AD, ischemic brain injury, and 

cognitive dysfunction [84, 85]. Uncoupling of M1 

mAChR from G-protein in the hippocampal area, 

which is the most affected by Aβ, was reported in the 

postmortem brains of AD patients [86–90]. Aβ causes 

the uncoupling of M1 mAChR from G-protein, which 

inhibits the function of M1 mAChR [91, 92]. 

Eventually, these studies depicted that a decreased 

M1 mAChR signal transduction will reduce levels of 

sAPPα, thereby increasing Aβ, thus triggering the 

onset of pathological features of AD. Though the 

mechanism of Aβ disrupting mAChR-G-protein 

coupling is unclear and is palliated, implicating 

antioxidants and reducing the involvement of free 

radicals [91]. Ultimately, we found that inhibition of 

M1 mAChR results in dementia and AD, and since 

PPI has a wide range of interactions with various 

proteins, we selected to analyze the interaction 

between PPI and M1 mAChR. Benztropine is a well-

known inhibitor of ACh muscarinic M1 and M3 

receptors (mAChR). The implication of benztropine 

promotes differentiation of oligodendrocyte precursor 

cells and allows greater axonal remyelination in 

comparison to other drugs or molecules employed for 

treating multiple sclerosis [93]. More hydrophobic 

interactions were noticed in the case of PPI in 

comparison to benztropine, which suggests better 

chances of binding. PPI showed lower binding energy 

and higher chances of binding; lansoprazole and 

tenatoprazole also showed a hydrogen bond, which 

requires less binding energy. Whereas benztropine 

showed no hydrogen bonding, and thus PPIs have 

higher chances of binding, or a similar fashion of 

binding as benztropine. 

PPI may also similarly inhibit M1 mAChR or 

potentially as benztropine (Table 3 and Figure 6). 

4.14 PPIs and vitamin B12 deficiency 

Gastric acidity is necessary for the absorption of 

vitamin B12, which is an essential water-soluble 
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vitamin, obtained from different dietary sources such 

as fish, meat, dairy products, and fortified cereal [94]. 

The risk of B12 deficiency increases with age [95]. B12 

is firmly bound to salivary R proteins and 

consequently requires acid-activated proteolytic 

digestion. PPI causes hypochlorhydria, resulting in 

vitamin B12 malabsorption [96]. PPI treatment for 2 

years or longer showed a statistically significant 

association with an increased risk of B12 deficiency 

[97]. Whereas another study, in contrast, reported 

that a 3-year or longer PPI use had no change in B12 

levels [98]. 

In recent studies, dementia and cognitive impairment 

have been associated with vitamin B12 deficiency due 

to chronic use of PPI [99]. Vitamin B12 is required for 

the production of nucleotides, phospholipids, and 

certain monoamine neurotransmitters [100]. Usually, 

vitamin B12 is responsible for converting 

tetrahydrofolate into methylcobalamin, which 

presents its methyl group to homocysteine, which is 

acted upon by methionine synthase and finally turns 

into methionine [99]. Vitamin B12 deficiency results 

in hyperhomocysteinemia and is considered a risk 

factor for cognitive impairment, dementia, and brain 

atrophy [101]. PP2A plays a crucial role in brain-

associated disorders as it is the key serine/threonine 

phosphatase and prevents tau hyperphosphorylation 

in the brain [102]. Reduced methylation reduces PP2A 

function and leads to hyperphosphorylation and tau 

aggregation [99]. Hyperhomocysteinemia also 

increases Aβ production, while folate/vitamin B12 

supplementation may attenuate these effects in 

animal models [103, 104]. 

According to these studies, elevated homocysteine 

levels are a strong risk factor for developing AD [105]. 

Alternatively, B12 can interact with thiol groups, i.e., 

cobalamin can directly bind to tau protein via 

cysteine, forming a B12/tau protein complex that 

prevents fibrillation of tau protein [99]. Vitamin B12 

capping on cysteine also prevents tau aggregation. In 

summary, PPI causes vitamin B12 deficiency and 

hyperhomocysteinemia, leading to PP2A inactivation 

and tau hyperphosphorylation, which may result in 

cognitive impairment. The direct binding of vitamin 

B12 to tau protein, resulting in inhibited fibrillation 

and aggregation, is also one of the major causes [99]. 

5. Conclusion 

There is currently no consensus on the role of PPIs 

and their associated risk in the development of 

dementia and AD. Dementia and AD are 

multifactorial in nature, and chronic PPI consumption 

may represent an additional risk factor for inducing 

neurodegeneration through various interactions with 

the CNS. Moreover, PPIs, as well as their possible 

interactions with other drugs, may act as γ-

aminobutyric acid (GABAA) agonists, leading to 

neurological adverse events. 

Indeed, people with dementia are often prescribed two 

or more medications, including PPIs and 

benzodiazepines, for a long time. The FDA has 

indicated that adverse events could be associated with 

PPIs and benzodiazepine interactions. Long-term 

benzodiazepine use itself has an underlying dementia 

risk, which can be increased by PPI use. Considering 

that PPIs can strongly bind and may have an 

inhibitory action on the GABAA R, this may lead to 

neurological dysfunction, the pathophysiology of 

dementia and AD, and other cognitive dysfunctions. 

Though the mechanisms by which PPIs may induce 

brain impairment are currently unknown, they may 

influence multimerization and stabilize tau 

aggregates or increase their susceptibility to form 

aggregates. Additionally, PPIs affect ionic pumps that 

control membrane potential in neurons, thereby 

altering electrochemical gradients. 

In summary, our results indicate that chronic 

treatment with PPIs can significantly influence 

several biochemical targets, including Aβ and tau 

protein formation, as well as M1 mAChR, AMPK, 

GABAA R, and endothelial function. The effects of 

PPIs on vitamin B12 levels and their ability to induce 

H2O2 production may have indirect impacts on brain 

health, particularly in older adults with moderate to 

severe malnutrition or other chronic conditions. 

Therefore, before starting a PPI treatment, except in 

remarkably inevitable cases, it is necessary to assess 

the cognitive status of patients, as well as the 

potential pharmacokinetic drug interactions that may 

occur from the concurrent use of multiple medications 

and PPIs. Finally, it is necessary to evaluate the risk-

benefit ratio of chronic PPI use in patients at risk of 

dementia and AD when prescribing such drugs. 
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