

Guillain-Barré Syndrome (GBS) Mimicking Diabetic Ketoacidosis (DKA) with Dyselectrolytemia

Madan S¹, Puri I² and Nagpal N³

*Correspondence: Shiva Madan, Department of Endocrinology, M.N. Hospital and Research Center, Bikaner, India

Received on 22 May 2025; Accepted on 20 September 2025; Published on 13 October 2025

Copyright © 2025 Madan S, et al. This is an open-access article and is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Diabetic ketoacidosis (DKA) is a serious complication of diabetes characterized by high blood sugar, acidic pH levels, and increased ketone levels in the body, mostly observed in individuals with type 1 diabetes mellitus (T1DM) but can rarely occur in those with type 2 diabetes mellitus (T2DM). It is commonly triggered by factors like infection, new-onset diabetes, or non-compliance with treatment [1]. The most frequent cause of sudden flaccid paralysis is Guillain-Barré syndrome (GBS). It is due to an autoimmune reaction that destroys peripheral nervous system nerves, resulting in symptoms including tingling, weakness, and numbness that can eventually become paralysis [2].

Case Presentation: We report a case of a 14-year-old female with T1DM admitted with altered sensorium and vomiting. On evaluation, it was found to be DKA. The patient was managed according to the ISPAD guidelines for DKA, with hypotonic fluids, potassium chloride, and phosphorus replacement. After 24 h of treatment, DKA recovered, and the patient regained consciousness, but she still had weakness, was unable to sit without support, and had difficulty swallowing. Clinical examination showed muscle tone was decreased, power at the hip was 2/5, at the knee and ankle was 3/5, and at the shoulder and elbow was also 3/5. The neurologist's opinion was taken, cerebrospinal fluid (CSF) was normal, and the nerve conduction velocity showed axonal and segmental demyelination; GBS was diagnosed.

Conclusion: Persistent weakness and dysphagia after DKA recovery and electrolytes are normalized, one should then suspect GBS. In early-onset GBS, CSF can be normal.

Keywords: Guillain-Barré syndrome, diabetic ketoacidosis

Abbreviations: DKA: diabetic ketoacidosis; GBS: Guillain-Barré syndrome; T1DM: type 1 diabetes mellitus; T2DM: type 2 diabetes mellitus; CSF: cerebrospinal fluid; IVIG: intravenous immunoglobulin

¹Department of Endocrinology, M.N. Hospital and Research Center, Bikaner, India

²Department of Neurology, S. P. Medical College, Bikaner, India

³Department of Radiology, Shri Ram Hospital, Bikaner, India

Case Report

14-year-old female with a history of type 1 diabetes mellitus (T1DM) for 8 months, stopped insulin for one month. She was admitted to our hospital with altered sensorium and vomiting for 3 days, and a diagnosis of diabetic ketoacidosis (DKA) was made. She was admitted elsewhere for 2 days, but there was no improvement in her sensorium. The first ABG showed pH-7.0, bicarbonate 8.1 mEq/L, a high anion gap, and urine ketone 3+; on our hospital admission, ABG showed pH-7.3, bicarbonate 16.8 mEq/L, urine ketone 2+, potassium was low (2.0 mEq/L), sodium 155 mmol/L, phosphorus 1.42 mg/dL, and magnesium was normal (2.10 mg/dL). Due to an altered sensorium, a CT brain was done, which was normal. The patient was managed according to the ISPAD guidelines for DKA, with hypotonic fluids, potassium chloride, and phosphorus replacement. After 24 h of treatment, DKA recovered, and the patient regained consciousness, but she still had weakness, was unable to sit without support, and had difficulty swallowing. Clinical examination showed muscle tone was decreased, power at the hip was 2/5, at the knee and ankle was 3/5, and at the shoulder and elbow was also 3/5. The plantar was mute, and all reflexes were absent; a sluggish gag reflex, and sensation was normal. Initially, it was thought that this was due to hypokalemia and hypophosphatemia, and she was put on a Ryle tube. After vigorous replacement, potassium and phosphorus were normalized, with partial improvement in weakness, power 3/5 at the hip, knee, ankle, and shoulder, and at the elbow 4/5. Dysphagia persisted, but there was no respiratory difficulty; after that, Guillain-Barré syndrome (GBS) was suspected. A neurologist's opinion was taken, and cerebrospinal fluid (CSF) was normal. The nerve conduction velocity showed axonal and segmental demyelination. The patient was transferred to the neurology department, and intravenous immunoglobulin (IVIG) was administered for 4 days. The patient's weakness improved gradually; on day 3, she could walk without support and swallow food.

Discussion

Here we report a case of a 14-year-old girl with GBS with DKA. GBS encompasses a range of nerve-related disorders marked by gradual muscle weakness and absent reflexes. It is thought that the mechanism behind GBS is an inflammatory neuropathy caused by the cross-reactivity of antibodies with neural antigens brought on by particular infections. Similar to gangliosides, lipooligosaccharides are expressed in the bacterial walls of infectious organisms like *C. jejuni*. Because of this molecular mimicry, antiganglioside antibodies are produced that target nerves [3]. As GBS can lead to respiratory failure necessitating mechanical ventilation, early treatment is more beneficial for optimal results [4]. There are only 4 case reports in the literature, DKA with GBS [5–8], and in all these cases, CSF protein was high. Albuminocytologic dissociation in CSF is a diagnostic hallmark of GBS. In our case, an interesting point was that the CSF examination was normal. Protein levels in the CSF may appear normal during the initial stages of GBS, but approximately 90 percent of patients exhibit elevated protein levels by the conclusion of the second week of symptom onset [9]. Another interesting point in our case is that the electrolyte was deranged, which can mimic GBS, but after the electrolyte improved, persistent weakness and dysphagia can give clues for suspecting GBS.

Conclusion

In summary, we reported a rare case of DKA associated with GBS. Persistent weakness and dysphagia, after DKA recovers and electrolytes are normalized, one should then suspect GBS. In early-onset GBS, CSF can be normal.

Funding

The authors received no financial support for research, authorship, and or publication of this article.

Conflicts of Interest

The author(s) do not have any conflict of interest.

References

- 1. Dunger DB, Sperling MA, Acerini CL, et al. ESPE/LWPES consensus statement on diabetic ketoacidosis in children and adolescents. Arch Dis Child. 2004;89(2):188-94.
- 2. Sejvar JJ, Baughman AL, Wise M, et al. Population incidence of Guillain-Barré syndrome: a systematic review and meta-analysis. Neuroepidemiology. 2011;36(2);123-133.
- 3. Walling AD, Dickson G. Guillain-Barré syndrome. Am Fam Physician. 2013;87(3):191-7.
- 4. Winer JB. Guillain-Barré syndrome. BMJ. 2008;17(337):a671.
- 5. Kanemasa Y, Hamamoto Y, Iwasaki Y, et al. A case of diabetic ketoacidosis associated with Guillain-Barré syndrome. Intern Med. 2011;50(19):2201-5.
- 6. Noviello TB, Noviello TC, Purisch S, et al. Diabetes ketoacidosis associated with Guillan-Barre syndrome. Arq Bras Endocrinol Metabol. 2008;52(3):562-565.
- 7. Fujiwara S, Oshika H, Motoki K, et al. Diabetic ketoacidosis associated with Guillain-Barré syndrome with autonomic dysfunction. Intern Med. 2000;39(6):495-8.
- 8. Rouanet-Larriviere M, Vital C, Arne P, et al. Guillain-Barré syndrome occurring in two women after ketoacidosic comatose state disclosing an insulin-dependent diabetes mellitus. J Peripher Nerv Syst. 2000;5(1):27-31.
- Van der Meché FG, van Doorn PA. Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy: immune mechanisms and update on current therapies. Ann Neurol. 1995;37(suppl 1):S14-S31.

To access the full-text version of this article, please scan the QR code:

