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Abstract 

Recent advances in biomedical applications have focused a lot of emphasis on the detection of 

what could be caused by cardiovascular disease (CVD). The electrocardiogram (ECG), which 

depicts the electrical activity of the heart, is the foundation for arrhythmia analysis. Different 

machine learning methods used on ECG datasets have demonstrated excellent performance in 

detecting arrhythmias. Nevertheless, feature extraction is necessary for machine learning 

algorithms. Modern deep learning techniques don't require feature extraction because they 

learn all the parameters simultaneously, in contrast to these techniques. In this study, a 1D 

convolutional neural network (CNN) approach is presented and tested on the arrhythmia 

database of the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH). The 

proposed model, which only has three layers, attained an accuracy of 97.40%. 

Keywords: electrocardiogram, ECG classification, arrhythmia detection, convolutional neural network, stochastic 

gradient descent, ECG, CNN, SGD 

 

Abbreviations: CVD: cardiovascular disease; ECG: electrocardiogram; CNN: convolutional neural network; MIT-
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Introduction 

As it is mentioned in the World Health Organization (WHO) reports, cardiovascular disease (CVD) is one of the major 

causes of death worldwide. Yearly, more than 30% of global deaths are caused by CVD. Besides, it is estimated that 

by 2035, more than 130 million adults will be suffering from CVDs [1]. Arrhythmias can be an indicator of underlying 
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CVD. Arrhythmias are conditions whereby the heart beats with an irregular or abnormal rhythm. Early detection of 

arrhythmia holds immense importance because timely intervention and treatment can significantly enhance the 

chances of saving lives. It is estimated that between 6–12 million people will suffer from arrhythmia in the US by 

2050. Therefore, detecting arrhythmia in the early stage is vital as with treatment, the lives of many can be saved. The 

solution for detecting arrhythmia in the early stage is continuous measurement of health parameters. Among 

physiological measurements, the electrocardiogram (ECG) is widely used for diagnosing arrhythmia. Continuous 

health parameter monitoring, particularly through ECG analysis and the integration of machine learning algorithms, 

is playing a pivotal role in transforming the landscape of CVD diagnosis and treatment, potentially saving countless 

lives in the process. In fact, the analysis of arrhythmia is mainly based on ECG [2–4]. Recently, machine learning 

algorithms have become important tools in diagnosing fatal diseases, such as CVD. Among machine learning methods, 

different algorithms have been used for the classification of arrhythmia, including K-nearest neighbor (KNN) [5], 

support vector machine (SVM) [6], fuzzy classifiers [7], feed-forward networks [8], long short-term memory (LSTM) 

[9], convolutional neural network (CNN), etc. Among these methods, different variations of CNN, including 1D CNN 

and 2D CNN, have shown great performance in arrhythmia detection based on ECG signals. Ullah et al. [2] developed 

two CNNs for arrhythmia detection based on ECG signals. One of their models is a 1D CNN with an accuracy of 

97.38% on the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) Arrhythmia Database, and the 

other, which is a 2D CNN model, achieved 99.02%, the highest accuracy among the researches so far. Also, Kiranyaz 

et al. [10] proposed a 1D CNN to categorize the data into five groups with an accuracy of 98.90% on the same dataset. 

There are many different configurations of CNN models applied to arrhythmia detection. However, most of them are 

deep models consisting of several layers. Our work, on the other hand, is based on a shallow CNN model. 

The detection of arrhythmias has significantly improved because of the combination of machine learning algorithms 

with continuous ECG monitoring in the diagnosis and treatment of CVD. Arrhythmias may now be recognised from 

ECG data using machine learning algorithms, which also include several classification strategies. These algorithms 

can recognise patterns and features in ECG signals, making it possible to classify arrhythmias accurately and 

automatically. In the detection of arrhythmias, machine learning techniques, particularly CNNs, have demonstrated 

outstanding accuracy. Examples are the accuracy values of 97.38% and 99.02% that Ullah et al. [2] published for the 

MIT-BIH Arrhythmia Database. Similar to this, Kiranyaz et al. [10] used a 1D CNN to obtain a high accuracy of 

98.90%. 

This paper takes a shallow 1D CNN model for an ECG dataset called the MIT-BIH Arrhythmia Database to categorize 

the signals into two main groups of normal and abnormal beats. As a version of end-to-end models adopted, there is 

no need for preprocessing the data. Also, there is no need for feature extraction, as in end-to-end models, all the 

parameters are trained simultaneously instead of step by step. Compared with other 1D CNN models trained on the 

same database, our model shows great performance. 

The major contribution of this work is to replace the current deep neural network with a shallow neural network to 

achieve the same accuracy more effectively. In the realm of machine learning and artificial intelligence, the 

development of a shallow neural network that reaches the same degree of accuracy as deep neural networks is an 

impressive achievement. This strategy has the following implications and potential benefits: In comparison to deep 

neural networks, shallow neural networks often include fewer layers and parameters. Because of their simplicity, they 

may be simpler to comprehend, train, and use. Deep networks' complicated designs make them difficult to develop 

and optimise. A shallow network might make the process of creating a model easier and lessen the need for in-depth 

hyperparameter tuning. 

The rest of the paper is organized as follows: Section 2 is an introduction to ECG and then arrhythmia. Then, the MIT-

BIH Arrhythmia Database is introduced. In the last part of section 2, we have a review of previous work in the sphere 

of arrhythmia deception based on ECG signals. Section 3 presents a thorough description of CNNs and how they 

work. Section 4 is dedicated to classification, including optimization and model performance. Different methods of 
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model evaluation are presented. After that, we have the architecture of the model in section 5. In this section, we 

explain how we developed our model and how it works. Section 5 gives conclusions to summarise the study. 

Characterisation of ECG and Arrhythmia 

ECG 

In cardiology, ECG is a crucial diagnostic tool. In addition to detecting CVD, ECG signals, as depicted in the figure 

(Figure 1), can be utilised to evaluate breathing patterns and any kind of mental stress. The electrical activity of the 

heart, which coordinates the synchronised contraction of its chambers and enables effective blood circulation 

throughout the body, produces the ECG signal. The complicated processes involving the ion movement within cardiac 

muscle cells give birth to this electrical activity. The foundation of the current algorithms for automated ECG diagnosis 

of cardiac arrhythmia is the evaluation of the morphological properties of a single or limited number of QRS 

complexes or beats. An ECG is a record of the heart's electrical activity, and an ECG signal captures that activity. 

These signals are related to numerous complex and interrelated mechanical, electrical, and chemical processes in the 

heart. They provide helpful knowledge on the functioning of the circulatory and neurological systems, as well as the 

heart. ECG can be used to evaluate breathing patterns as well. It can assist in tracking respiratory rate and locating 

respiratory conditions that might have an impact on the heart when paired with other data. Additionally, ECG is a 

useful tool for stress testing and determining how the heart reacts to psychological stressors since it can identify 

variations in heart rate and rhythm linked to mental stress [11]. 

 
Figure 1: Electrocardiogram (ECG) signal. 

The heart muscle is electrically activated as a result of the ECG signal. The stimulation causes the heart's atria and 

ventricles to constrict, which in turn encourages heart muscle cells to do the same. Muscular contraction causes blood 

to start flowing through the organs. As a result of the electrical stimulation spreading throughout the heart muscle, a 

depolarization wave is produced in the cardiac cells. This depolarization wave was generated by the fast sodium ion 

fluctuation. Following the depolarization wave, a phase known as the re-polarization phase, the heart muscle cells 

return to their resting state. Ion fluctuations within the cells are what cause heart muscle cells to depolarize and 

repolarize. An electrical current is generated by the movement of ions within the cardiac muscle cells, and this 

electrical current, in turn, generates an electromagnetic field around the heart. 

At two different bodily regions, ECG signals are captured as variations in electric potentials. The voltage that was 

recorded between the two places and this variation are consistent. This voltage is a representation of the ECG signal's 

strength as it was recorded in the two-electrode setup. The two-electrode configuration is known as an ECG lead. In 

this setup, one electrode functions as an active measurement unit and the other electrode as the resource. The voltage 

change of two electrodes throughout this period represents the course of the ECG signal. The signal that is captured 
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on paper or electronic equipment is referred to as an "ECG" in this context. By studying ECG data, we can gain 

important knowledge on the mechanical, anatomical, and electrical elements of the heart. The ECG signals are made 

up of the P wave, which represents the depolarization of the atria, the QRS complex, which indicates the contraction 

of the ventricles due to depolarization, and the T wave, which represents the repolarization of the ventricles. 

Arrhythmia 

Arrhythmia is one of the most common forms of CVD, which results in irregular heartbeats. A slow, rapid, or erratic 

beat can all be considered irregular. Arrhythmia can range widely, which means it may just cause minor pain or, in 

rare circumstances, result in death. While some arrhythmia cases go undetected, the more severe ones can make it 

difficult to breathe or cause chest pain. Although the majority of arrhythmias are not dangerous, some of them can 

cause heart attacks or strokes. The type of arrhythmia that occurs most frequently is atrial fibrillation (AF). Between 

6 and 12 million people in the US are predicted to have AF by the year 2050 [12]. 

The use of wearables to continuously monitor patients is becoming more popular as a result of technological 

advancements. Therefore, automatic arrhythmia detection methods are necessary. There are a few steps in the machine 

learning-based arrhythmia detection process that must be finished before the model can identify the type of irregularity 

and classify it after the signal has been cleaned of noise and distortions. Arrhythmia is a disorder of the heart's rhythm. 

Either a single irregular heartbeat or a series of them is feasible. 

Several machine learning techniques have become well-known in the field of arrhythmia identification due to their 

efficacy. Three standouts are as follows: 

Support vector machines (SVM): In detecting arrhythmias, SVM has shown outstanding performance accuracy. Its 

main advantage is its prowess in nonlinear, high-dimensional recognition tasks, which are frequently encountered in 

the processing of challenging physiological data. Even with small sample sets, SVM can accurately categorise 

arrhythmias, making it a useful diagnostic tool. 

Neural networks: For the identification of arrhythmias, neural networks, particularly deep learning architectures, 

have been frequently used. The automatic classification of arrhythmias benefits from the ability of CNNs and recurrent 

neural networks (RNNs) to learn complex patterns within ECG data. 

Fuzzy classifiers: Arrhythmia detection can be done in a different way with fuzzy logic-based classifiers. They are 

able to deal with the data's uncertainty and imprecision, which are common in medical contexts. When it comes to 

dealing with ambiguous or borderline cases of arrhythmia, fuzzy classifiers can be especially helpful. 

SVM, neural networks, and fuzzy classifiers, among other machine learning tools, are crucial for turning raw ECG 

data into insights that can be put to use. Early detection of arrhythmias is essential for patient treatment since these 

algorithms can identify tiny patterns and aberrations that could be invisible to the human eye. 

In conclusion, the requirement for automatic arrhythmia detection techniques is becoming more critical as wearable 

technology develops. SVM, neural networks, and fuzzy classifiers are a few examples of machine learning algorithms 

that provide strong tools for precisely recognising and categorising arrhythmias. In the area of heart health, these 

techniques help to improve patient monitoring, early intervention, and healthcare outcomes. 

MIT-BIH Arrhythmia Database 

The MIT-BIH Arrhythmia Database was created from more than 4000 ECG records that the Beth Israel Hospital 

Arrhythmia Laboratory registered between 1975 and 1979. The database has 48 records overall, each lasting a little 

longer than 30 min; 23 records were chosen at random, while the remaining 25 were chosen from the same group. 

Almost 60% of the data is gathered from patients. 
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The MIT-BIH database has been utilized for most published studies because it is the most representative database for 

arrhythmia. 

Previous work 

Utilizing machine learning techniques, the procedure for identifying arrhythmia from ECG signals involves sequential 

steps of pre-processing, feature extraction, feature selection, and classification. Nevertheless, the progression of end-

to-end algorithms facilitated by deep learning methodologies has transformed ECG-based arrhythmia diagnosis. This 

evolution eliminates the necessity for intricate feature engineering, as end-to-end models concurrently learn all 

parameters rather than individually. There are numerous strategies documented in the literature for the pre-processing 

step of ECG signal noise elimination, including average and median filters, bandpass filtering, empirical mode 

decomposition (EMD) [13], independent component analysis (ICA) [14], adaptive filters [15], adaptive Fourier 

decomposition [16], threshold method for high-frequency noise detection [17], Kalman filters [18], neural networks 

[19], convolutional neural networks (CNNs) [20], wavelet transform (WT) [13, 16, 18], and a combination of neural 

networks with the discrete wavelet transform (DWT) [21]. 

For ECG feature extraction, several techniques like Hermite coefficients [22], high-order statistics (HOS) features 

[23], wavelet features [24–27], and waveform shape features [28, 29] have been applied. 

Different machine learning methods have been used for the classification of arrhythmia. Among these methods, the 

2D CNN proposed by Ullah et al. [2] achieved the highest accuracy. Besides, 1D CNN methods showed great 

performance in arrhythmia detection. The 1D CNN model proposed by Kiranyaz et al. [10] achieved second place 

with 98.90% accuracy on the test set. They trained the model using patient-specific training data. 

Deep 1D CNN was able to classify each sample in 0.015 seconds while achieving an overall recognition accuracy of 

91.33% [30]. 

Using enhanced expectation-maximization (EM) and Gaussian mixture model (GMM), Ghorbani Afkhami et al. [31] 

reported a technique for detecting arrhythmias. They achieved a classification accuracy for arrhythmias of 99.7%. 

Kaur et al. [32] used WT for ECG-based arrhythmia detection and achieved a sensitivity of 99.85% and positive 

predictivity of 99.92% (Table 1). 

References Year Method Performance measure 

Daamouche et al. [6] 2012 SVM 
Sensitivity: 91.75%; specificity: 

96.14%  

Homaeinezhad et al. [33] 2012 
Neuro SVM-KNN fusion 

classification 
Accuracy: 98.20% 

Kutlu et al. [5] 2012 KNN Sensitivity: 90%; specificity: 98% 

Rai et al. [8] 2013 
MLP, feed-forward network, back-

propagation 
Sensitivity: 90%; specificity: 96% 

Martis et al. [34] 2013 NN, SVM Accuracy: 93.00% 

Javadi et al. [35] 2013 Negative correlation neural learning 
Accuracy: 96.02%; sensitivity: 

92.27%; specificity: 98.01% 

Vafaie et al. [7] 2014 Fuzzy classifier; genetic algorithm  
Genetic algorithm accuracy: 98.67%; 

fuzzy classifier accuracy: 93.34% 

Zhang et al. [36] 2014 
Multi-lead fused classification 

scheme 
Accuracy:87.88% 

Zubair et al. [37] 2016 1D CNN Accuracy: 92.60% 

Al Rahhal et al. [38] 2016 DNN Accuracy: 98% 

Kiranyaz et al. [10] 2016 1D CNN 
Accuracy: 98.90%; sensitivity: 

95.90%  

Rangappa et al. [39] 2018 KNN Accuracy: 98.40% 
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Alfaras et al. [40] 2019 
Machine learning-based echo state 

networks 
Sensitivity: 92.7%; precision: 86.1% 

Rajkumar et al. [41] 2019 1D CNN Accuracy: 90.00% 

Izci et al. [42] 2019 2D CNN Accuracy: 97.42% 

Tuncer et al. [43] 2019 

hexadecimal local patterns (HLPs) 

and discrete wavelet transform 

(DWT) 

Accuracy: 99.7% 

Zhang et al. [9] 2021 LSTM, CNN Accuracy: 95.28% 

Ullah et al. [2] 2021 1D CNN, 2D CNN  
1D CNN accuracy: 97.38%; 2D CNN 

accuracy: 99.02% 
Table 1: Strategies documented in the literature for the pre-processing step of ECG signal noise elimination. 

Among different methods, CNNs show great potential in achieving high accuracies. 

Convolutional Neural Network 

Convolutional neural networks (CNNs) are a specialised class of artificial neural networks carefully created for 

handling grid-like input structures. Time series data, which may be thought of as a 1D grid, or photographs, which are 

effectively 2D grids made up of pixels, might both be examples of these data grids, as explained by Goodfellow et al. 

[44]. In essence, the input layer, one or more hidden layers, and the output layer are the three basic building blocks of 

CNNs and other feedforward neural networks. 

The application of a mathematical procedure known as convolution, at least once within each of their layers, is the 

distinguishing feature that gives CNNs their name. Similar to how neurons in the human brain react when they come 

into contact with a certain stimulus, this convolution activity has a purpose. CNNs are particularly well-suited for 

tasks involving grid-like structures because they are highly effective at recognising patterns and features within the 

input data by applying convolution. In the figure below (Figure 2), a convolution layer has been depicted for better 

understanding. 

 
Figure 2: A convolution operation. 

Every CNN also includes a layer known as pooling in addition to convolution. There are several different pooling 

techniques, with "max pooling" being one of the most popular. In max pooling, the network retains the maximum 

value while condensing the data within a rectangle neighbourhood. In order to improve the computational efficiency 

of the model, this pooling layer is crucial in lowering the spatial dimensions of the data. In essence, pooling aids in 

gathering the most important data while omitting irrelevant details, which is very useful in image processing tasks. 

The figure (Figure 3) depicts the behaviour of a max pooling layer. 
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Figure 3: A max pooling layer. 

The completely connected layer, which is a feature shared by all CNN models, is another essential element. These 

completely linked layers, which are frequently placed before the output layer, act as a link between the retrieved 

features and the ultimate prediction or classification goal. They give the network the ability to understand complex 

connections and relationships between the data acquired by convolution and pooling layers, enabling more precise 

and complex predictions. 

CNNs, a potent and crucial tool in the field of deep learning, are created expressly to succeed in problems involving 

structured data grids, such as those involving images and time series data. In a variety of applications, from image 

recognition to natural language processing and beyond, they are able to extract meaningful features, reduce 

computational complexity, and provide exceptional performance because of their ability to perform convolutions, 

pooling operations, and use fully connected layers. 

Activation function 

In neural networks, each neuron calculates the weighted sum of its inputs, applies the activation function, a nonlinear 

function, and then outputs the outcome to the next layer. The activation function is a kind of operation acting on the 

inputs. The activation function ReLU is defined as 𝑔 (𝑧) = 𝑚𝑎𝑥{0, 𝑧}. This represents applying the ReLU yields a 

nonlinear transformation. 

Another commonly used activation function is sigmoid. The sigmoid function is defined as 𝑆(𝑥) =
1

(1+𝑒−𝑥)
. Softmax 

is defined as 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =
𝑒𝑥𝑝(𝑥𝑖)

∑ 𝑒𝑥𝑝(𝑥𝑗)𝑛
𝑗=1

. 

Dropout 

Typically, we are curious about how well an algorithm performs on unobserved data. We divided the data into a train 

set and a test set as a result. We have two types of errors when we split the dataset into the training and test sets. 

Overfitting occurs when there is a difference between the training and the test error. We employ dropout, which 

randomly omits some connections between the neurons in the model, to prevent overfitting in our model. To lessen 

overfitting, a regularisation technique called dropout is used. During each training iteration, it randomly deactivates 

(drops out) a portion of the neural network's neurons or connections. The dropout procedure generates noise and forces 

the model to make predictions using a more reliable and distributed collection of attributes. Dropout thereby enhances 

the model's generalisation capability by preventing the model from becoming highly specialised in fitting the training 

data. 

Classification 

One of the most common machine learning tasks, classification, involves classifying inputs into the appropriate 

groups. A matrix known as the design matrix serves as the data representation in machine learning models. The design 

matrix has different examples in each row, and each column represents a different characteristic. The weight matrix 
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is a different matrix we have that has the parameters. The parameters change to new values as the models are being 

trained. We should use optimisation techniques to minimise the cost function when training the model. The method 

that determines the gradient of the cost function with respect to the parameters and subsequently modifies the 

parameters is called back-propagation. 

Cost function 

In order to train the model, we optimise the cost function. The model's weights are changed as the cost function is 

minimised. Machine learning model training's core goal is to optimise the cost function by changing the model's 

weights. As a result, the model can successfully carry out the desired task, whether it be classification, regression, or 

another machine learning task. This process enables the model to learn from the training data and make correct 

predictions on fresh, unknown data. 

Binary cross-entropy, also known as log loss, is a cost function applied in binary classification problems. It is defined 

as 
− ∑ [𝑦𝑖𝑙𝑜𝑔𝑝(𝑦𝑖)+(1−𝑦𝑖)𝑙𝑜𝑔(1−𝑝(𝑦𝑖))]𝑁

𝑖=1

𝑁
. 

Optimisation 

There are two types of errors in machine learning issues. The mistake determined on the training set is known as the 

training error. The term "generalisation error" or "test error" refers to the error determined by unobserved data, namely 

the test set. The objective of machine learning problems is to lower test and training errors. Optimisation techniques 

are used to discover the best values for the model's parameters and minimise the cost function. Machine learning 

models are frequently trained using gradient-based optimisation techniques like stochastic gradient descent (SGD), 

Adam, or RMSprop. These algorithms repeatedly change the parameters of the model in a way that lowers the cost 

function. 

▪ Stochastic gradient descent algorithm 

Stochastic gradient descent (SGD) is an iterative optimisation technique for objective functions that typically exhibits 

smoothness features. One of the most significant algorithms in deep learning and machine learning is SGD. Due to its 

efficiency and effectiveness in minimising objective functions, SGD is a crucial optimisation process in machine 

learning and deep learning. It is a foundational technique for training a broad variety of machine learning models, 

especially in the era of deep learning, due to its stochastic character, which enables it to handle enormous datasets and 

complex models quickly. 

Algorithm) SGD update at training iteration r [44] 

 

Require: Learning rate 𝜖𝑟 

Require: Initial parameter 𝜃 

         while stopping criterion not met do 

                   Sample a minibatch of n examples from the training set {𝑥(1), . . . 𝑥(𝑚)} with corresponding targets 𝑦(𝑖). 

                   Compute gradient estimate: 𝑔 ← +
1

𝑚
∆𝜃 ∑ 𝐿(𝑓(𝑥(𝑖); 𝜃), 𝑦(𝑖))𝑖  

                  Apply update: 𝜃 ← 𝜃 − 𝜖𝑔 

          end while 
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Model performance 

To measure the ability of an algorithm, we must use a performance measure. For the classification task, plenty of 

statistical measurements are used. 

▪ Accuracy 

Accuracy is defined as the ratio of the correct predictions to the total amount of data. Most of the ECG-related studies 

prefer accuracy as the success measure. Accuracy is defined as below: 

(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 

▪ Recall 

Recall, which is also known as sensitivity, refers to the percentage of pertinent instances that were successfully 

recovered. Recall specifically determines how many of the samples that are actually positive are anticipated to be 

positive. It is just the ratio of samples that were positively predicted to all samples that were actually positive. The 

following formalizes recall: 

𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

▪ Precision 

Precision is the percentage of pertinent occurrences among the retrieved instances, often known as the positive 

predictive value. Simply put, it is the percentage of real positives within the overall number of favorably predicted 

samples. Here is how precision is defined: 

𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

▪ Specificity 

For each accessible category, a model's ability to predict true negatives is measured by the statistic known as 

specificity. The following formalizes specificity: 

𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
 

▪ Area under curve (AUC) (or receiver operating characteristic (ROC)) 

The true positive rate or sensitivity is shown against the false positive rate, which is the ratio of false positives to the 

total number of negative samples at different settings. This is known as the receiver operating characteristic (ROC) 

curve. Two places are created within the ROC by the diagonal line. In contrast to the area beneath the line, which 

reflects results that are worse than a random forecast, the area above the line displays positive model results. 

Results 

For building a machine learning model, three things are required: a dataset for training and then validating, a cost 

function, and an optimization algorithm. 

To classify the heartbeats into normal/abnormal classes, we applied a 1D shallow CNN model consisting of one 

convolution layer, one fully connected layer, and a dense layer. After training the model for one hundred epochs, the 

results are displayed in the table below (Table 2). The model could separate the normal from abnormal cases with an 
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accuracy of 97.4%. The architecture of the model has been drawn in the figure (Figure 4). Also, the area under curve 

(AUC) curve of the model has been drawn in the figure (Figure 5). 

  Train Test 

AUC 0.998 0.993 

Accuracy 0.985 0.974 

Specificity 0.981 0.980 

Precision 0.987 0.957 

Recall 0.981 0.961 

Table 2: Results after training the model for one hundred epochs. 

 
Figure 4: The architecture of the model. 

 

 
Figure 5: The area under curve (AUC) curve. 

Conclusion 

Information about the heart's electrical activity is present in the ECG signal, which is useful for diagnosing heart 

conditions. An algorithm for ECG-based arrhythmia detection was put out in this study. The results demonstrate the 

model's strong performance when compared to other efforts. The creation of an effective ECG-based arrhythmia 
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detection algorithm is an important achievement with applications in healthcare and medical diagnosis. The success 

of this algorithm opens the door to a number of potential future applications with concise shallow neural networks, 

including the incorporation of automated arrhythmia detection into medical devices, wearable technology, 

telemedicine platforms, and electronic health record systems. 
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