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Abstract 
Introduction: Several hypotheses explain the onset and pathology of Alzheimer’s disease (AD), such as the amyloid 

hypothesis and the tau hypothesis. Consequently, various biomarkers have been identified and drugs developed, but the 

fight against the AD epidemic is still ongoing. Perhaps it is time to explore new hypotheses. To begin with, researchers have 

shown that neuropathology associated with AD typically starts to develop decades before the clinical onset or manifestation 

of the disease. However, therapeutic interventions are still being designed to address mild-to-moderate stages of the disease, 

which are unfortunately irreversible. 

Methods: We have reviewed various mathematical models to identify any missing parameters that could support the 

proposed time factor hypothesis for AD. In addition, we have developed a cognitive function algorithm that utilizes the 

identified parameters. The algorithm’s results are used to predict the likelihood of neuritic dystrophy. 

Results: With mathematical evidence, we emphasize the importance of timely diagnosis of AD and provide support for 

considering an earlier age of 30 years (rather than 60 years or older) for effective interventions, including diagnosis and 

drug development. 

Discussion: Among other points, we showed that 𝐴𝛽42 aggregation starts around age 30–40 years. With this information, we 

propose the need to re-engineer the concepts behind the science of AD. The number of AD patients will experience a nose 

dive if effort aimed at timely prevention of (for instance) 𝐴𝛽42 aggregation is expended. 

Keywords: Alzheimer’s disease, the time factor hypothesis, atrophy, neuropathology 

 

Abbreviations: AD: Alzheimer’s disease, APP: amyloid precursor protein, CSF: cerebrospinal fluid, GVD: granulovacuolar 

degeneration, NFTs: neurofibrillary tangles, CAT: computerized axial tomography, MRI: magnetic resonance imaging, PET: 

positron emission tomography, fMRI: functional magnetic resonance imaging 

 

 

 

1. Introduction 

Alzheimer’s disease (AD) is the most prevalent 

neurodegenerative disorder and the leading cause of 

dementia in older adults; it accounts for about 80% of 

cases [1]. AD is an age-related disease in which 

degenerative brain disorder characterized by 

neuronal atrophy progresses over decades, destroying 

memory and cognitive decline. As well as behavioral, 

physical inabilities, and death [2, 3]. There are many 

schools of thought on the onset of AD. It has been 

observed that about 50–80% of AD cases are inherited 

[4], while other patients develop the disease even 

when they are not genetically susceptible to it [5]. 

Late-onset AD is due to the APOEϵ4 gene and three 

single-gene mutations, namely, amyloid precursor 

protein (APP) on chromosome 21, presenilin 1 

(PSEN1) on chromosome 14, and presenilin 2 

(PSEN2) on chromosome 1, that are 50% responsible 

for early onset of the disease [5]. 

Life expectancy in AD varies from 3–10 years 

depending on the age at which the patient was 

diagnosed [6, 7]. There has been a rising number of 

suicides associated with AD [8], recorded that over 95 

patients of AD died by suicide in England (from 

January 1, 2001, through December 31, 2019). 

Perhaps this stems from the frustrations and concerns 

of AD having no cure. There are no clinical diagnostic 

tools for AD, and available mechanisms are 

inconclusive and autopsy-dependent. Unfortunately, 
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current treatments aim to treat cognitive issues 

instead of underlying pathology [9]. This situation 

further exacerbates the severity of the disease, as it 

gives ample time for unlimited brain atrophy. The 

focus of this article is on developing a paradigm for the 

creation of diagnostic devices as a byproduct of 

mathematical models. 

Mathematical models of AD provide a road map of the 

disease’s progression, highlighting key factors and 

interactions. It helps researchers navigate the 

complexities of AD and identify potential intervention 

targets. Just as a map can be used to plan a route, a 

mathematical model can be used to predict the effects 

of potential treatments or interventions. Researchers 

can explore different scenarios and evaluate the likely 

outcomes by simulating the model with different 

inputs. 

Mathematical models also create entry points for the 

introduction of AI and machine learning algorithms to 

aid studies in biomarker discovery [10, 11]. Recently, 

neuroimaging has been employed as a diagnostic tool 

to determine whether or not there is beta-amyloid (or 

tau protein) in the brain to help increase clinical 

certainty of diagnosis. 

One of the theories that explain the onset and 

progress of AD, according to neuroscientists and 

clinicians, is the amyloid-beta (𝐴𝛽) phenomenon, also 

known as the amyloid hypothesis. It is one of the 

lesions that define the neuropathology of AD due to 

how extracellular plaques in the brain are built by the 

dyshomeostasis between the production and clearance 

of 𝐴𝛽42 and consequent neuritic and glial 

cytopathology in memory and cognitive sections of the 

brain [12, 13]. 

The second brain lesion of AD is neurofibrillary tau 

protein tangles [14]. The phenomena of aggregated 

hyperphosphorylated tau proteins are also regarded 

as the tau tangles hypothesis. It is known that 

amyloid-beta (𝐴𝛽) plaques play a central role in the 

risk and progress of AD, while the number of 

neurofibrillary tangles (NFTs) correlates with the 

degree of dementia more strongly than the number of 

plaques [15]. 

Amyloid-beta (𝐴𝛽) and tau proteins’ associations with 

AD are the focus of several biological studies and 

research. Other subjects of research are APOE4, 

cerebrospinal fluid (CSF), and non-CSF body fluids 

(such as saliva, serum, and urine). Data and results 

obtained from the research are either used to develop 

diagnostic models [16, 17] or drugs [18]. 

The time factor hypothesis was developed in response 

to the urgent need for timely medical intervention for 

AD based on accurate diagnostics. This article 

consists of four sections: a review of mathematical, 

emerging tech models and other results (Section 2), 

the time factor hypothesis (Section 3), a summative 

discussion (Section 4), and the conclusion (Section 5). 

2. Math, Tech Models and Other Results 

In this section, we will review some mathematical 

models of AD, followed by a survey of parameters and 

premixes of emerging technologies and other studies 

in the subject’s context. We will explore various 

mathematical models of AD, such as the amyloid 

hypothesis, tau hypothesis, and neuroinflammation 

hypothesis, which help us understand the underlying 

mechanisms of the disease, as well as identify caveats 

to support the time factor hypothesis vis-`a-vis critical 

factors of AD, AD pathogenesis, onset and progression 

of AD. Additionally, we will examine the use of various 

parameters and premixes in emerging technologies 

and other studies, such as machine learning 

algorithms and neuro-imaging, along with autopsy 

findings on the aging brain, brain weight loss and 

aging, and brain atrophy to gain insights into general, 

early, and timely interventions. 

2.1 Mathematical models of AD 

Models are optimized designs of solutions to diverse 

real-life problems. Researchers have developed 

mathematical models to define critical 

components/factors of AD [18], its pathogenesis [19], 

onset and progression [20], and many more. These 

models aim to provide a deeper understanding of the 

neuropathogenesis of AD, including the molecular and 

cellular processes that lead to it, drug development, 

and simulation. 

Mathematical models could be designed to focus on 

various aspects of AD, such as the amyloid-𝛽 

aggregation process [21, 22] in the presence of metal 

ions [23], the survey of amyloid-𝛽 and tau protein-

dependent pathologies [24], brain atrophy from tau 

pathology [25], vagus nerve stimulation [26], protein 

misfolding mechanisms in neurological diseases [27], 

etc. 

These models agree on the concept and use of 

parameters related to the death of neurons, 

homeostasis, and imbalance of glial cells in the central 

nervous system (CNS), i.e., astroglia and microglia 

activities about the production, clearance, diffusion, 

and agglomeration of amyloid proteins. 

In the context of this article, we will take a closer look 

at three mathematical models presented by Hao et al. 

[18], Puri et al. [19], and Bertsch et al. [20]. These 

models provide insights into AD’s onset, progression, 

and underlying bio-molecular mechanisms. 

2.1.1 List of selected parameters 

A point 𝑥 in cerebral tissue (Ω), 𝑢𝑚(𝑥, 𝑠) molar 

concentration of 𝐴𝛽 polymer of length 𝑚 at point 𝑥 and 

time (𝑠) in hours, 1 ≤  𝑚 <  𝑁, surviving and dead 

neurons 𝑁𝑠 and 𝑁𝑑, quiescent and proliferating 

astroglia 𝐴𝑞 and 𝐴𝑝, reactive and normal microglia 𝑀1 

and 𝑀2, diffusion 𝑑, agglomeration rate (𝑎), reactive 

oxidative stress 𝑅, 𝐴𝛽 release rate 𝜆𝛽
𝑖 . 𝑃 (𝑡, 𝑎∗ → 𝑎): 
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probability for neuron (𝑎) to jump from state 𝑎∗ to 

state 𝑎 ∈  [0, 1]. 

2.1.2 Critical factors of AD 

Hao et al. [18] proposed a mathematical model for AD 

that takes into account critical variables associated 

with the disease. Their model includes neurons, 

astrocytes, microglia, peripheral macrophages, 

amyloid 𝛽 aggregation, and hyperphosphorylated tau 

proteins. The authors utilized systems of partial 

differential equations to represent the interactions 

between these variables in the context of AD. 

The model provides a quantitative framework for 

studying the dynamics of AD by capturing the 

complex interplay between different factors 

contributing to the development and progression of 

AD. The simulation of the model was utilized to test 

the efficacy of drugs that either failed in clinical trials 

or are currently in clinical trials. A unique analogy 

from Hao et al. [18] is that the decay (partial 

derivative) of any of the factors can be represented by 

the following equation: 

[𝑓𝑎𝑐𝑡𝑜𝑟 𝑑𝑒𝑐𝑎𝑦] = [𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛] − [𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛] 

While the accumulation of say, amyloid-𝛽 peptide 

satisfies: 

[𝑎𝑐𝑐𝑢𝑚𝑎𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒] = [𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛] − [𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒] 

For further information, please refer to the article. 

However, it’s worth noting that while the model 

effectively captures the current state of AD, it doesn’t 

include parameters to identify the history or predict 

the progression of the disease. This highlights the 

urgent need for a hypothesis for timely interventions. 

2.1.3 AD pathogenesis 

Puri et al. [19] developed a mathematical model that 

shares similarities with the model proposed by Hao et 

al. [18]. Both models define critical components of AD 

pathogenesis based on differential rate equations. We 

note, as with the remarks made regarding Hao et al. 

[18], that research goals, drugs, and other 

mechanisms have failed over the decades because 

they focused on managing the aftermath of the disease 

rather than addressing the core problem. 

2.1.4 Onset and progression of AD 

𝜕𝑢𝑚 = 𝑑𝑚∆
2𝑢𝑚⏟    

𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

+ [
1

2
∑ 𝑎𝑗,𝑚−𝑗𝑢𝑗𝑢𝑚−𝑗 − 𝑢𝑚 ∑ 𝑎𝑚𝑗𝑢𝑗

𝑁
𝑗=1

𝑚−1
𝑗=1 ]⏟                          

𝑎𝑔𝑔𝑙𝑜𝑚𝑒𝑟𝑎𝑡𝑖𝑜𝑛

 (1) 

Bertsch et al. [20] model (Eq. 1) describes the onset of 

AD due to the variation of the molar concentration of 

oligomeric 𝐴𝐵42 polymers based on diffusion and 

agglomeration rates at a point 𝑥 ∈  Ω over a short 

time, i.e., 

 

 

[𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 (𝑠ℎ𝑜𝑟𝑡) 𝑡𝑖𝑚𝑒] = [𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛] + [𝑎𝑔𝑔𝑙𝑜𝑚𝑒𝑟𝑎𝑡𝑖𝑜𝑛] 

The concentration of 𝐴𝐵42 at 𝑥 ∈  Ω at a specific time 

𝑠 as a result of production and the in+out flow is 

expected to be small owing to the small diffusion 

coefficient 𝑑𝑚 when 𝑚 is large, as big assemblies of 

monomers do not move (i.e., 𝑈𝑁,𝑁 = 0). However, this 

equilibrium is highly volatile, so it is easily triggered 

by source factors (Ƒ), such as coagulation. Thus, Eq.1 

becomes Eq.2. This leads to diffusion being equal to 

zero in addition to 𝐴𝐵42 production in the brain. 

𝜕𝑠𝑢1 = 𝑑1𝛻
2𝑢1 − 𝑢1∑ 𝑎1,𝑗

𝑁
𝑗 = 1 𝑢𝑗 + Ƒ                            (2) 

As a result, a transitive relationship between 

diffusion (and production), fibrils activities, oligomers 

formulation, and plaques development can be deduced 

based on the increase in the production level of 

monomers, which implies an increase in polymer 

length from 𝑚
𝑡𝑜
→  𝑁 (𝑓𝑖𝑏𝑟𝑖𝑙𝑠). This, in turn, leads to the 

creation of oligomers, which leads to the formation of 

plaques. The authors modeled the progression of AD 

using the function 𝑓(𝑥, 𝑎, 𝑡)𝑑𝑎, which expresses the 

degree of malfunctioning neurons with parameter 𝑎 

ranging from 0 to 1 at a time (𝑡). Furthermore, over 

time, the malfunctioning leads to the deterioration of 

neurons with a rate of 𝑣 =  𝑣(𝑥, 𝑎, 𝑡). Therefore, the 

progression of the disease can be defined by 

𝐽[𝑓] = 𝜕𝑡𝑓 + 𝜕𝑎(𝑓(𝑣)[𝑓]) 

where 

𝐽[𝑓] = 𝜂 (∫ 𝑃(𝑡, 𝑎∗
1

0
 →  𝑎) 𝑓(𝑥, 𝑎∗, 𝑡) 𝑑𝑎∗ − 𝑓(𝑥, 𝑎, 𝑡)) ×  (𝑥, 𝑡) (3) 

and 

𝑃(𝑡, 𝑎∗ → 𝑎) = {
2

1−𝑎∗ 
 

0
𝑖𝑓 𝑎∗ ≤  𝑎 ≤  

1 +  𝑎∗

2
 

                                                  otherwise 

Please refer to Bertsch et al. [20] for more detailed 

information about this model. It is important to note, 

however, that this model does not indicate the timing 

of any of these activities concerning age. 

2.1.5 Observations 

In summary of the above models, key observations 

are: 

a) Although time is a critical parameter in all of 

the models, their longitudinal consideration 

of time’s integral effect on the onset of AD is 

often downplayed or overlooked. 

b) The models lack a consistent or standard rate 

to promptly deduce the individualized effect 

of the disease or history. 

c) The models’ outcomes are not generalizable 

to younger adults as they are based on the 

assumption that age is above 65 years. 
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2.2 Emerging technologies 

As earlier indicated, there are no diagnostic tools for 

AD, and methodologies that exist generate only 

partial diagnostics of the disease. This further 

exacerbates issues concerning AD. For one, patients 

cannot be moved into the treatment phase without a 

diagnosis, giving the disease more time to cause 

intense atrophy. Emerging technologies, empowered 

by ubiquitous computing, are being employed to find 

solutions to the health problems constituted by AD. In 

this section, we highlight the advances made under 

two subjects: machine learning and neuroimaging. 

2.2.1 Machine learning algorithms 

Regarding the context and subject, defining the data 

acquisition pipeline is herculean as it demands the 

input of several experts. Furthermore, 

neuroscientists, bioinformatics, and data scientists (to 

mention a few) are needed to interpret the data. 

Samples usually required in such pipelines include 

most body fluids. Blood, saliva, urine, and CSF are 

examples. Researchers then develop algorithms 

(usually) built on mathematical or statistical 

principles to determine classical patterns in the 

dataset. Identified patterns are then used to classify 

cohorts [16, 17] to extend such results to the clinical 

diagnoses of AD. 

2.2.2 Neuroimaging 

Neuroimaging is taking functional or structural 

picture images of the brain. The most common types 

of neuroimaging are computerized axial tomography 

(CAT), magnetic resonance imaging (MRI), positron 

emission tomography (PET), and functional magnetic 

resonance imaging (fMRI). CAT and MRI are 

structure imaging, while PET and fMRI produce 

functional images of the brain. The context of this 

article does not call for further details of 

neuroimaging. Suffice it to indicate that neurologists 

decipher the state of the brain with neuroimages. For 

example, PET and radioactive tracers have made it 

possible to detect beta-amyloid in vivo. PET supports 

the amyloid hypothesis. With this technology, people 

with cognitive complaints in which AD is a possible 

diagnosis take the PET scan to detect beta-amyloid 

plaques and built-ups in the brain. In particular, 

possible AD dementia is a case where the core criteria 

for all-cause dementia are met, but the presentation 

is an atypical course or of mixed etiology [28]. For 

instance, the impact of normal aging and elderly stage 

AD are barely distinguishable in neuroimaging [29]. 

In this case, convolutional neural networks (CNNs) or 

other machine learning algorithms could be employed 

to aid in correct prediction, classification, and 

distinguishing between aging images, early-stage 

mild cognitive impairment (MCI), and AD [30]. 

 

 

2.3 Other results and studies 

2.3.1 Autopsy findings on the aging brain and 

their relationship to neurodegeneration 

Autopsy studies have shown that normal aging is 

associated with a range of changes in the brain. These 

changes include the loss of brain weight, the 

appearance of amyloid bodies, granulovacuolar 

degeneration (GVD), and Hirano bodies in the 

hippocampus. These findings indicate neuritic 

dystrophy, atrophy of the gyri, and widening of sulci, 

which support the subsequent loss of brain weight due 

to aging. In addition, amyloid plaques and NFTs, 

which are known pathological lesions and hallmarks 

of AD, are also observed in the aging human brain, 

even in people without dementia. 

In addition, studies have shown that individuals with 

trisomy 21, also known as Down syndrome, have three 

copies of the APP gene and almost always develop 

neuropathology characteristics of AD later in life. 

Even those who do not develop AD and die in their 

early-to-mid teens from other causes have been found 

to have abundant diffuse 𝐴𝛽 plaques without neuritic 

dystrophy, microgliosis, astrocytosis, and tangle 

formation. These pathological changes would typically 

accumulate gradually in individuals with trisomy 21 

in their late teens and beyond [12]. 

These findings suggest that the underlying 

mechanisms of neurodegeneration may begin in the 

aging brain, even before the onset of clinical 

symptoms of dementia [31]. 

2.3.2 Brain weight loss and aging: effects on 

cognitive functioning 

According to Dekaban [32], the weight of a normal 

brain is between 1200–1400 g. However, the decrease 

in brain weight typically starts around 45–50 years of 

age and reaches its lowest value after age 86 years. In 

their institution, the average brain weight of 100-

year-olds was found to be 1097 g (n = 24), and it 

remained nearly the same (1093 g at 100–111 years 

old; n = 61) even in cases where the individual is over 

100 years old. 

This decrease in brain weight is attributed to cerebral 

atrophy, which implies the loss of brain cells or the 

number of connections between brain cells. This, in 

turn, leads to a decline in cognitive functions, such as 

problems with thinking, memory, multitasking 

abilities, and other everyday tasks for aging people 

without dementia [33]. However, even in people 

without dementia, the aging brain may exhibit 

pathological lesions, such as amyloid plaques and 

NFTs, which are known to be the hallmarks of AD [31, 

34]. 

 

 



Time Factor Hypothesis: Towards Identifying Onset of Alzheimer’s Disease in Younger Adults 

Volume 1 Issue 6 5 

2.3.3 Brain atrophy 

Consider Eq. 1 from Bertsch et al. [20] again. The 

equation models the onset of AD as a result of 

longitudinal upward variation of the (aggregation) 

concentration of 𝐴𝛽 m-polymers as a result of reduced 

diffusion of insoluble fibrils of 𝐴𝛽 and increased 

coagulation of 𝐴𝛽 monomers into oligomers and 

subsequently plaques. This assertion critically 

contributes to the proposed time factor hypothesis, in 

that, it illuminates the need to determine what 

age/time this scenario is most likely to commence. 

3. Time Factor Hypothesis 

The list of observations in section 2.1.5 is replicated in 

section 2.3. Neuropathology associated with AD 

typically begins decades before the onset of clinical 

symptoms and the manifestation of the disease [35, 

36]. Thus, therapeutic interventions targeting the 

mild-to-moderate clinical stage may be too late to 

effectively slow or prevent the disease progression 

[12]. The complex etiology of AD makes it unrealistic 

to develop drugs capable of reversing decades-long 

atrophy of nerves, nerve pathways, or autonomous 

mechanisms. Similarly, it is impossible to resuscitate 

dead cells, reverse excessive or under-secreted 

proteins, or re-engineer a broken nervous system. 

While age is the most significant known risk factor for 

AD, not all susceptible aged individuals exhibit 

features of the disease [37]. Also, there are individuals 

with early onset of the disease. The time factor 

hypothesis proposes that focusing on seemingly 

healthy individuals in research may be essential to 

reverse the AD epidemic. This approach involves 

identifying early biomarkers of AD and developing 

appropriate ‘therapeutic’ interventions that can slow 

or prevent the disease progression before clinical 

symptoms become apparent. 

3.1 Cognitive function algorithm 

Based on the parameters and premises discussed in 

Section 2, a machine-learning algorithm has been 

developed. The pseudocode of the algorithm can be 

found in the supplementary material (Supplementary 

Material 1). The algorithm defines several functions 

to check for different aspects of brain health based on 

the given premises: check brain weight loss (age, brain 

weight) function checks whether the brain weight is 

within the normal range for a given age, while the 

check cognitive decline (age, cognitive functions) 

function checks whether there are any signs of 

cognitive decline based on the age and cognitive 

functions. The check brain lesions (lesions present) 

function checks whether there are any known 

pathological lesions in the brain and check neuritic 

dystrophy (amyloid bodies, GVD, Hirano bodies) 

function checks for evidence of neuritic dystrophy. 

Upon execution, the algorithm calls these functions 

the assigned sample age 𝑋. It then checks and returns 

different aspects of brain health. See the table for 

algorithm results with different age values (Table 1). 

Age = X 30 40 50 60 70 

Brain_weight = ? 1300 1250 1200 1200 1150 

Cognitive_functions = ? Normal Normal Normal Normal Decline 

Lesions_present = ? False False False True True 

Amyloid_bodies = ? True True True True True 

GVD = ? False True True True True 

Hirano_bodies = ? False False True True True 
Table 1: Results of example usage of the machine learning algorithm for age (X) = 30, 40, 50, 60, and 70. Notice that granulovacuolar 

degeneration (GVD) is true (already started) at age 40, with normal cognitive functions and false lesions presence. Thus, this 

suggests that clinical advances in the fight against Alzheimer’s disease may need to be focused on the age group 30–40, where 

subtle changes related to the disease may already be occurring.

4. Summative Discussion 

Additionally, a logistic regression model was created 

and trained to predict using the data (Table 1) 

generated by the machine learning algorithm. The 

pseudocode for the logistic regression can be found in 

the supplementary material (Supplementary Material 

2). The logistic regression model was then used to 

predict the likelihood of AD for individuals with ages 

30, 40, 50, 60, and 70 while assuming a brain weight 

of 1300. The results indicate that: 

1. Likelihood of AD for age 30: 0.52% 

2. Likelihood of AD for age 40: 4.02% 

3. Likelihood of AD for age 50: 20.31% 

4. Likelihood of AD for age 60: 61.53% 

5. Likelihood of AD for age 70: 92.48% 

Based on the results, the likelihood of AD increases 

with age. Notably, GVD is present at age 40, 

indicating that changes related to AD may already be 

occurring at that age. However, normal cognitive 

functions and the false lesions presence suggest that 

the patient is not yet exhibiting significant symptoms 

of AD. This finding emphasizes the need for the 

pivotal consideration of the integral effect of time on 

the onset of AD, which is usually downplayed in 

studies and models. Furthermore, this finding 

suggests that clinical advancements in the fight 

against AD may need to be focused on the age group 

of 30–40, where subtle changes related to the disease 

may already be occurring. 

Our findings also indicate that an average healthy 

individual experiences a brain weight loss of around 4 

g per year, even without dementia. This is based on 
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the assumption that the average age and brain weight 

of a healthy individual is 47 years and 1300 g, 

respectively. Also, it is assumed that the brain weight 

decreases to 1095 g at 105 years, resulting in a loss of 

205 g over 58 years. This rate of brain weight loss is 

more aggressive and higher for individuals with AD, 

which is estimated to cause a 10% faster rate of brain 

atrophy compared to the normal aging process [38]. 

To further support this conclusion, we simulated 

mathematical models Eq.1 for the aggregation of 𝐴𝛽 

from Bertsch et al. [20] and re-interpreted Figure 6 

[39] using a brain weight loss rate of 4 g per year (y-

axis) and time (decades) on the x-axis (Figure 1). Our 

attention is directed to the points with red marks for 

the results of the simulations. The grid allows the ease 

to count in decades on the x-axis and shows 

consistency with our conclusions: a) the average 

healthy adult experiences a brain weight loss of 

approximately 4 g per year, and b) the 30–40 age 

bracket should be a key area of focus for clinical 

advances in the battle against AD. If the total effect 

(weight loss) by the brain due to age and 𝐴𝛽42 plaques 

is equal to or below 4 g (red mark on the y-axis), the 

individual is normal. An individual is at risk if the 

level of CSF 𝐴𝛽, CSF tau, or amyloid PET count is 

otherwise or higher concerning age. GVD is also 

observed at age 40 (red mark on the x-axis). Brain 

weight or size is critical in this analogy as it indicates 

the buoyancy of the brain. Anyaiwe [40] proposed the 

use of brain size for diagnosing AD. 

 

 

Figure 1: A grid-aided interpretation of Figure 6 [39] using a brain weight loss rate of 4 g per year (y-axis) and time (decades) on 

the x-axis. If the total effect (weight loss) by the brain due to age and 𝐴𝛽42 plaques is equal to or below 4 g (red mark on the y-axis), 

the individual is normal. An individual is at risk if the level of CSF 𝐴𝛽, CSF tau, or amyloid PET count is otherwise concerning age. 

Granulovacuolar degeneration (GVD) is observed at age 40 (red mark on the x-axis).

5. Conclusion 

This study aims to show that time is of critical essence 

in the science of timely diagnosis and care for AD 

patients. Essentially, earlier intervention gives a 

wider scope for help and possible interventions even 

before signs of the disease onset. These interventions 

could be in many aspects. For example, maintaining 

CSF 𝐴𝛽42 secretion level (maybe through medication 

or diet) or enhancing its diffusion has been found to 

collaborate with brain global atrophy. 

We observed (as evident in the mathematical models 

reviewed in the course of this article) that time is not 

considered in its present term, nor is the integral 

effect of the disease over time viewed as a vital 

component in the science of Alzheimer’s. Rather, time 

is used in retrospect as in the age of the individual 

with a hinge on the state of the manifestations of the 

disease. The time factor hypothesis is the tool to 

reverse this practice. 

“Recent data in individuals with familial AD (i.e., 
individuals with rare genetic mutations that develop 

AD) has shown that beta-amyloid can begin to 

accumulate 20–25 years before the clinical onset of the 

disease” [41]. However, it appears that this 

observation has been overlooked. Only by developing 

a time factor hypothesis can researchers refocus their 

aims. Similar oversights are also obtainable in 

adopting modern technologies and machine learning 

algorithms in discovering AD biomarkers or 

classification models, which, by extension, support the 

long list of failed drugs. 

In this article, we showed that 𝐴𝛽42 aggregation starts 

around the age of 30–40 years. With this information, 

we propose the need to re-engineer the concepts of the 

science of AD. The number of AD patients will 

experience a nose dive if effort aimed at timely 

prevention of (for instance) 𝐴𝛽42 aggregation is 

expended. 

We suggest creating age-stratified datasets and 

utilizing machine learning techniques in future work. 

Specifically, age brackets of 30–39, 40–49, and 50–59 

should be generated to capture distinctive behavioral 

patterns and compare them with those of an aged 

control group (aged 60 years and older). 
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