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Abstract 

Background and Aim: The study objective was to assess chaotic global metrics in malnourished 

children following power spectral manipulations. 

Methods: We evaluated the complexity of heart rate (HR) variability (HRV) in malnourished 

subjects via six power spectra (Welch, multi-taper method (MTM), Burg, covariance, Yule-

Walker, and periodogram) and then, when adjusted by the MTM parameters, for further 

refinement. Seventy children were split equally (controls & malnourished) and the HR was 

monitored for 20 min; 1000 RR-intervals were attained for HRV analysis. 

Results: The results stipulate that CFP1 (chaotic forward parameter) and CFP3 are the best 

metrics to distinguish the two groups. The most appropriate power spectra were Welch, MTM, 

and Yule-Walker. Results indicate that CFP3 calculated using MTM power spectra is the best 

combination to discriminate between the two groups. Yet, if the RR intervals are set to 400, 

discrete prolate spheroidal sequences (DPSS) to 3, and Thomson’s nonlinear combination to 

‘adaptive’, a greater level of significance can be achieved (Cohen’s ds = -1.57). This 

significantly outperforms that under default conditions (Glass’s ∆ Delta = -1.06, and Cohen’s 

ds = -0.95). 

Conclusion: Malnourished children have a lower response to chaotic global metrics than the 

control group. CFP3 with the aforementioned settings is the best combination to discriminate 

between these groups on the basis of RR intervals. It has the greatest significance by Cohen’s 

ds. Our data suggest impaired autonomic function in malnourished children, which may have 

consequences for cardiovascular risks. 
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Introduction 

This study assesses the cardiac autonomic modulation by chaotic global analysis of heart rate variability (HRV) in 

malnourished children. This has been studied before [1], but here is described a more robust assessment via six power 

spectra and further parameter manipulations. Autonomic imbalance measured by HRV and increased cardiovascular 

risks has been marked in overweight children and youths [2, 3] besides the malnourished [1] and those with anorexia 

nervosa [4, 5]. 

Successive heartbeats designated as RR-intervals are consequential on the electrocardiographic PQRST motif. They 

have been established to oscillate in an irregular and often chaotic manner [6]. Here, we aim to evaluate the risks that 

malnutrition poses to the autonomic nervous system (ANS) through computations related to HRV. To complete this 

we executed the Shannon entropy [7] and detrended fluctuation analysis (DFA) [8] algorithms to six different power 

spectra to recognize which exhibited the greatest and most sensitive chaotic responses. 

In 2014, Garner et al. [9] derived the spectral entropy and spectral detrended fluctuation analysis (sDFA) metrics. 

These were founded on the Welch power spectrum [10]. Later, their high spectral variants, hsEntropy and hsDFA 

were formulated and used in mathematical inverse problems by Garner et al. in 2021 [11] based on the multi-taper 

method (MTM) power spectrum [12]. These variants were demonstrated to be more sensitive to fluctuations in chaotic 

response. MTM spectra are more flexible with more parameters and have less spectral leakage. 

Yet, here there are further modifications based on the covariance [13], Burg [13], Yule-Walker [14], and periodogram 

[15] power spectra. So, we are assessing six power spectra with the purpose of achieving results of greater significance 

by parametric and non-parametric statistics and three effect sizes [16] when comparing controls to malnourished 

children. Then, it should be possible to attain a clinical diagnosis of ANS alterations quicker and provide the required 

interventions sooner. 

The benefit of constructing a relationship between HRV and the ANS is that it can provide a benchmark for 

cardiovascular risk and dynamical diseases [17, 18]. HRV is a simple, reliable, and inexpensive procedure to monitor 

the ANS [19, 20]. Hence, it helps to plan therapies due to early identification of health problems. 

Sufficient chaotic behaviour in biomedical systems typically specifies healthy physiological status. A lessening of 

chaotic tendencies could be a pathophysiological marker [21]. Assessments such as these are valuable when evaluating 

the safety and comfort of surgical or ICU patients [21], particularly if sedated [22] or incapable of indicating distress 

as in sleep apnea [23] or when experiencing dyspnea [24]. We expect malnourished children to respond in a nonlinear 

or complex way, as occurs in subjects with attention deficit hyperactivity disorder (ADHD) [25], chronic obstructive 

pulmonary disease (COPD) [26], or type 1 diabetes mellitus (T1DM) [27] amongst others. The chaotic global metrics 

should be able to discriminate healthy from malnourished children. 

Methods 

Methods and materials were exactly as in the studies by Barreto et al. [1] and Garner et al. [28]. Typically, 20–25 min 

of RR-intervals is sufficient for chaotic global analysis [25, 29, 30]. In fact, ultra-short lengths (RR≈125) of data have 

been effective in obese youths [31]. The STROBE checklist [32–34] was followed throughout. 
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Population and sample 

Seventy subjects, regardless of genders between three and five years of age were split equally: malnourished (23 girls; 

3.71 ± 0.75 years; 13.02 ± 1.71 kg; 91.53 ± 5.47 cm; Z-score = -2.80 ± 0.59) or eutrophic (20 girls; 4.09 ± 0.85 years; 

17.89 ± 3.04 kg; 106.83 ± 8.15 cm; Z-score = 0.191 ± 1.28). The malnourished group comprised of children less than 

-2 in Z-score as per the criteria for age and gender by the World Health Organization (WHO) [35]. The eutrophic 

group included children with Z-scores greater than or equal to -2 and less than +3, also as per the WHO criteria. 

Omitted from the study were obese children (Z-score greater than +3) or who had at least one of the following; taking 

pharmacotherapies that could affect cardiac autonomic activity, such as propranolol or atropine. Likewise, children 

who had infections, metabolic or cardiorespiratory system diseases that could alter cardiac autonomic control. 

The subjects and parents/guardians were knowledgeable as to the study techniques and objectives and, after approving 

participation, they signed terms of informed consent. All techniques received consent from the ethics committee of 

the Institution (Process nº 275.310). 

Experimental protocol 

Before the experimental procedures were underway, information was logged on age, gender, mass, and height. The 

anthropometric measurements were assumed following the recommendations of Lohman et al. [36]. Mass was 

measured by a digital scale (Filizzola PL 150, Filizzola Ltda., Brazil) with a precision of 0.1 kg, with the children 

barefooted and dressed in light-weight clothing. Dietary and meal contents prior to the measurements were as 

consistent as much as possible. Height was measured via a stadiometer with a precision of 0.1 cm. The data collection 

was undertaken in a laboratory with the temperature maintained between 21°C and 23°C and relative humidity 

between 40% and 60%. Data were at all times logged between 14:00 and 17:00 to minimize circadian rhythm 

interferences [37, 38]. Following the initial evaluation, all techniques regarding data collection were elucidated on an 

individual basis and the children were told to remain at rest and not to talk during the experiment. 

The heart monitor belt was positioned on the thorax, aligned with the distal third of the sternum. The Polar S810i heart 

rate receiver (Polar Electro, Finland) was located on their wrist. The apparatus had been validated for beat-by-beat 

monitoring of heart rate and the application of these datasets for HRV analysis [39]. The children were in the dorsal 

decubitus position on a pillow and continued at rest with natural breathing for 20 min. 

After the experimental procedures, the child was discharged. The HRV behavior pattern was logged beat-by-beat 

during the monitoring process at a sampling rate of 1 kHz. After digital and manual filtering for the elimination of 

premature ectopic beats and artifacts, 1000 consecutive RR intervals were obligatory for the data analysis. Only series 

with > 95% sinus rhythm were included [40]. 

Chaotic global metrics and CFP1 to CFP7 

There are three types of chaotic global metrics. They are spectral entropy, sDFA, and spectral multi-taper method 

(sMTM). All three were defined by Garner et al. [9]. In that case, spectral entropy and sDFA were calculated via the 

Welch power spectrum [14]. Later the high spectral alternatives which performed better were established and used in 

both forward [25, 27, 29] and mathematical inverse problems [11]. These are computed by implementing the MTM 

power spectrum throughout [1, 25]. These chaotic global metrics create the seven chaotic forward parameters; their 

non-trivial combinations. Those that are calculated using DFA respond to their chaotic sensitivities backward to the 

others, therefore we subtract its value from unity. 

Six power spectra 

Previously, the chaotic global metrics were produced via the Welch or MTM power spectra. These spectra are imposed 

as standard procedure for accurately estimating the chaotic globals and, their seven non-trivial permutations; CFP1 to 
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CFP7. de Souza et al. [41] designated the application of the Welch power spectrum to achieve chaotic global metrics 

in subjects with T1DM. 

Vanderlei et al. and Wajnsztejn et al. in similar studies described their application to youth obesity [2] and ADHD 

[25], respectively by applying the MTM spectra throughout. Latterly, it has been substantiated that MTM is a more 

adaptive and nonlinear technique, and as such it provides lesser spectral leakage. So, hypothetically should be more 

sensitive to chaotic and irregular responses [27]. 

During all these calculations the MTM power spectrum was required to compute the chaotic global metric; sMTM 

[9], also referred to as CFP6. sMTM (or CFP6) computes the degree of broadband noise in the system associated with 

increasing chaotic response. 

Yet, in this study, we calculated further four spectral entropies and sDFAs. We produce an additional four using the 

following power spectra: covariance, Burg, Yule-Walker, and periodogram. Accordingly, including the Welch and 

the MTM, we attain six variants of these chaotic globals. These calculate an additional seven non-trivial permutations 

via these six power spectra. All three individual chaotic global metrics have a weighting of unity. Settings for these 

six power spectra are now defined. 

When computing spectral entropy and sDFA via Welch's method the settings are: (i) 1 Hz for sampling frequency, (ii) 

overlap of 50%, (iii) a Hamming window and the number of discrete Fourier transform (DFT) point to use in the 

power spectral density (PSD) estimate is the greater of 256 or the next power of two greater than the length of the 

segments, and (iv) no detrending. 

Then, with MTM, the parameters are set as the following: (i) 1 Hz for sampling frequency (ii) time bandwidth for the 

discrete prolate spheroidal sequences (DPSS) often referred to as Slepian sequences [42] is set at 3; (iii) FFT is the 

larger of 256 and the next power of two greater than the length of the segment; (iv) Thomson's ‘adaptive’ nonlinear 

combination method to combine individual spectral estimates is applied. DPSS is intentionally set at 3; not 5 as with 

Garner et al. [9, 11] as these time-series are much shorter. 

The periodogram power spectral density estimate is a nonparametric estimate of a wide-sense stationary random 

process using a rectangular window. The number of points in the DFT is a maximum of 256 or the next power of two 

greater than the signal length. 

Finally, for the covariance, Burg and Yule-Walker methods the order is of the autoregressive model used to produce 

the power spectra density estimate and is set to 16. A default DFT length of 256 is enforced. 

Statistical Assessments 

One-way analysis of variance (ANOVA1) and Kruskal-Wallis tests 

Datasets need to be normally distributed if parametric statistics are to be executed; applying the mean as an indicator 

of central tendency. If data normalization is unfeasible, we do not compare means. To establish the level of normality 

we implemented the Anderson-Darling [43], Ryan-Joiner [44], and Lilliefors [43] tests. These three tests are similar 

but assess normality in slightly different ways. That termed Anderson-Darling applies an empirical cumulative 

distribution function, whilst the Ryan-Joiner test is a correlation-based test. The Lilliefors test is beneficial when the 

numbers in the cohorts are low. In this study of child malnutrition, the results were mostly inconclusive. Therefore, it 

is impracticable to detect if the data is normal or non-normal regarding their distributions. Consequently, we computed 

both the one-way analysis of variance, ANOVA1 (parametric) [45] and Kruskal-Wallis (non-parametric) [46] tests of 

significance. 
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Three effect sizes 

Results from ANOVA1 and Kruskal-Wallis test were often unsuccessful. They could not discriminate between the 

two groups when they both gave p < 0.01, (or, < 1%). Accordingly, it is suitable to compute their effect sizes [47]. 

Cohen’s ds [16] is the prime subcategory of effect sizes. It refers to the standardized mean difference between two 

groups of independent observations for an appropriate sample [48]. 
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The numerator is the variation between the means of two groups of observations. The denominator is the pooled 

standard deviation. These differences are squared. At that point, they are summed and divided by the number of 

observations minus one for bias, in the estimation of the variance. To finish, the square root is applied to the 

denominator. 

Hedges’s gs is another effect size [49]. It is unbiased. Even so, the difference between the two is trivial, particularly 

with sample sizes > 20 [50]. 
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Finally, when the standard deviations differ considerably between conditions, Glass’s ∆ delta is suitable [51]. This 

computes the control group’s standard deviation alone, and the experimental group is avoided. 

For effects size extents they are nominated as 0.01 > very small effect; 0.20 > small effect; 0.50 > medium effect; 0.80 

> large effect; 1.20 > very large effect. These are based on benchmarks by Cohen and Fritz et al. [52, 53]. 

Multivariate analysis by principal component analysis 

Principal component analysis (PCA) [54, 55] is a statistical procedure for evaluating the complexity of high-

dimensional data sets. PCA is suitable when sources of variability in the data need to be clarified or, reducing the data 

complexity and via this assess the data with fewer dimensions. PCA’s key objective is to characterize the data with 

fewer variables alongside supporting the majority of the total variance. 

There are two important properties of the PCA: 

1) The technique is non-parametric, so no prior information may be combined. 

2) Data reduction often sustains losses in information. 

There are four important procedural expectations: 

1) Linearity, this identifies that the data maintains linear combinations of the variables.  

2) The certainty of mean and covariance.  

3) No assurance that the direction of maximum variance will contain suitable discriminative features.  

4) Large variance has the key dynamics and the lowest adapts to noise. 

When understanding PCA the following need consideration: 

1) The higher the component loadings the more central that the variable is to that component.  

2) Positive and negative loadings are recognized to be mixed.  

3) The sign (+/-) of the loadings is irrelevant.  

4) The rotated component matrix is vital. 
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CFP1 and CFP3 – MTM Spectrum Only 

RR length, Thomson’s nonlinear combinations, and DPSS 

Now we assess the outcome of manipulating Thomson’s nonlinear combination settings on the MTM spectra. There 

are three options. The default ‘adapt’ is the adaptive frequency-dependent weights. The 'eigen' method weights each 

tapered PSD estimate by the eigenvalue (frequency concentration) of the corresponding Slepian taper. The 'unity' 

method weights each tapered PSD estimate identically [56]. 

Besides, in unison, we assess the outcome of altering the settings of the DPSS from 2 to 13. A DPSS equal to 1, 

specifies the Blackman-Tukey [57, 58] fast Fourier transform, so is excluded. It has a fixed window, so is not adaptive. 

Theoretically, it elicits greater spectral leakage. 

DPSS affects the adaptation properties of the tapers with the purpose of diminishing spectral leakage. Whilst assessing 

the consequences of the Thomson’s nonlinear combinations settings and the levels of DPSS on the chaotic response, 

the sampling frequency is fixed at 1 Hz for the MTM and FFT is the larger of 256 and the next power of two greater 

than the length of the segment that is enforced. We evaluated the outcomes of DPSS (2 to 13) and Thomson’s nonlinear 

combinations (‘adaptive’,’eigen’, and ‘unity’). During the analysis, there are between 50 to 1000 RR-intervals. We 

measured both CFP1 and CFP3. These were the only permutations significant under default conditions for the Welch, 

MTM, and Yule-Walker power spectra. Alternative power spectra do not provide significant results. MTM is preferred 

as it has more constraints that can be adjusted to produce a response of the greatest significance. For CFP3 under 

default conditions, Yule-Walker is slightly more significant (Hedges gs and Cohen’s ds), but only the order can be 

adjusted, here it is set to 16. 

Results 

ANOVA1, Kruskal-Wallis, and effect sizes 

We have computed the seven versions of the three chaotic globals CFP1 to CFP7; both in controls and the 

malnourished children (both n = 35). Firstly, we achieved this throughout with 1000 RR intervals. The statistical 

results are illustrated in the six boxplots, one for each power spectrum (Figure 1). 

From the table (Table 1), we noted that the combinations CFP1 and CFP3 behave equally for the Welch, MTM, and 

Yule-Walker power spectra. All CFP1 and CFP3 for Welch, MTM, and Yule-Walker have similar responses. They 

have a p < 0.01 (or, < 1%) for the ANOVA1 and Kruskal-Wallis tests of significance and, have medium to large effect 

sizes by all three effect size measures – Glass’s ∆ Delta, Hedges gs, and Cohen’s ds. They establish a decrease in 

chaotic response in the malnourished children group compared to the controls. 

MTM (Glass’s ∆ Delta) and Yule-Walker (Hedges gs and Cohen’s ds) have better levels of significance when 

compared by their effect sizes. It is impracticable to distinguish between the two groups on the basis of the ANOVA1 

and Kruskal-Wallis tests as both give p < 0.01 (or, < 1%). This is the benefit of calculating the effect sizes. They are 

more selective and responsive between the results. 

The periodogram power spectra have a significant result for CFP3 (p < 0.01, large effect size) only. This is the best 

performer but cannot be manipulated to further improve as with MTM. It is, nevertheless advantageous when 

considering elevated levels of signal noise. 

Burg and covariance give significant results for CFP2 and CFP5 (p < 0.01, medium to large effect sizes), yet the effect 

size values are positive and so respond in the opposite way to those options for MTM, Welch, Yule-Walker, and the 

periodogram designated beforehand. Those values which give positive values for the effect sizes can be disregarded. 

It has been established that there should be a decrease in chaotic response when comparing the controls to the 

malnourished children group. This was achieved in an earlier study under default conditions [1]. 
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Figure 1: The boxplots of the seven combinations of chaotic forward parameters (CFP1 to CFP7) for the six power spectra density estimates 

(Welch, MTM, Burg, Covariance, Yule-Walker, and Periodogram) of 1000 RR intervals in control subjects (CFPx C) and those malnourished 

subjects (CFPx M). The point closest to zero is the minimum and the point farthest away is the maximum. The point next closest to zero is the 5 th 

percentile and the point next farthest away is the 95th percentile. The boundary of the box closest to zero indicates the 25th percentile, a line within 

the box marks the median (not mean), and the boundary of the box farthest from zero indicates the 75th percentile. The difference between these 

points is the inter-quartile range (IQR). Whiskers (or error bars) above and below the box indicate the 90th and 10th percentiles respectively. 

Power 

spectrum 

CFP 

(1 to 7) 

ANOVA1 Kruskal-

Wallis 

Glass’s ∆ 

Delta 

Hedges gs Cohen’s ds 

 

 

 

MTM 

 

CFP1 0.0067 0.0001 -0.7628 -0.6615 -0.6689 

CFP2 0.2835 0.3296 -0.2475 -0.2555 -0.2584 

CFP3 0.0002 <0.0001 -1.0635 -0.9399 -0.9504 

CFP4 0.5049 0.5689 -0.1623 -0.1585 -0.1602 

CFP5 0.2406 0.2219 0.2841 0.2799 0.2830 

CFP6 0.1639 0.0885 -0.3380 -0.3327 -0.3364 

CFP7 0.2238 0.2131 -0.2890 -0.2902 -0.2935 

 

 

 

Burg 

 

CFP1 0.1363 0.1115 0.3143 0.3564 0.3604 

CFP2 0.0095 0.0057 0.5357 0.6308 0.6378 

CFP3 0.0442 0.0360 -0.4542 -0.4847 -0.4901 

CFP4 0.0162 0.0191 0.5302 0.5828 0.5893 

CFP5 0.0001 <0.0001 0.8337 0.9653 0.9761 

CFP6 0.1639 0.0885 -0.3380 -0.3327 -0.3364 

CFP7 0.0128 0.0006 -0.5366 -0.6045 -0.6113 

 

 

 

Welch 

 

CFP1 0.0079 0.0001 -0.7436 -0.6469 -0.6541 

CFP2 0.2917 0.2799 -0.2463 -0.2512 -0.2540 

CFP3 0.0003 <0.0001 -1.0234 -0.9006 -0.9107 

CFP4 0.4735 0.5297 -0.1741 -0.1704 -0.1723 

CFP5 0.3226 0.2851 0.2378 0.2355 0.2382 

CFP6 0.1639 0.0885 -0.3380 -0.3327 -0.3364 
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CFP7 0.2602 0.2263 -0.2679 -0.2684 -0.2714 

 

 

 

Yule-Walker 

CFP1 0.0056 0.0033 -0.6930 -0.6766 -0.6842 

CFP2 0.1282 0.1570 -0.3419 -0.3640 -0.3681 

CFP3 0.0001 <0.0001 -1.0303 -1.0007 -1.0119 

CFP4 0.5838 0.5609 -0.1322 -0.1301 -0.1316 

CFP5 0.1350 0.1844 0.3398 0.3576 0.3616 

CFP6 0.1639 0.0885 -0.3380 -0.3327 -0.3364 

CFP7 0.0634 0.0669 -0.4429 -0.4462 -0.4512 

 

 

 

Periodogram 

CFP1 0.0190 0.0007 -0.6568 -0.5679 -0.5743 

CFP2 0.5394 0.4773 -0.1375 -0.1458 -0.1475 

CFP3 0.0001 <0.0001 -1.1154 -0.9974 -1.0085 

CFP4 0.7830 0.8188 -0.0667 -0.0654 -0.0661 

CFP5 0.0286 0.0376 0.5042 0.5287 0.5346 

CFP6 0.1639 0.0885 -0.3380 -0.3327 -0.3364 

CFP7 0.1782 0.1844 -0.3185 -0.3216 -0.3252 

 

 

 

Covariance 

CFP1 0.1586 0.1224 0.3441 0.3370 0.3408 

CFP2 0.0080 0.0046 0.6128 0.6463 0.6535 

CFP3 0.6264 0.3752 -0.1224 -0.1156 -0.1169 

CFP4 0.2284 0.1903 0.2968 0.2873 0.2906 

CFP5 0.0080 0.0074 0.6056 0.6464 0.6537 

CFP6 0.1639 0.0885 -0.3380 -0.3327 -0.3364 

CFP7 0.2958 0.1076 0.2840 0.2491 0.2519 
Table 1: Table of results for the chaotic responses (CFP1 to CFP7) derived via six power spectra (Welch, MTM, Burg, Covariance, Yule-Walker 

& Periodogram) for those control subjects and those children who were malnourished (both n = 35). We computed the significance (p-value) by 

parametric and non-parametric techniques: One way analysis of variance (ANOVA1) and Kruskal-Wallis tests of significance, respectively. We 

also calculated their effect sizes Glass’s ∆ Delta, Hedges gs and Cohen’s ds. A negative value for effect sizes indicates a decrease in response from 

control to malnourished children, and a positive value the opposite response. We assessed 1000 RR-intervals throughout. Level of significance is 

set at p < 0.01, (or < 1%) for the ANOVA1 and Kruskal-Wallis tests. 

Principal component analysis 

We computed the component loadings CFP1 to CFP7 for the 1000 RR-intervals of 35 malnourished children (Table 

2). So, a grid of 7-by-35. The values CFP1 and CFP3 are selected as the most significant values, deduced by the power 

spectra; Welch, MTM, and Yule-Walker. Regrettably, the periodogram only attains significance for CFP3. For these 

aforementioned three power spectra CFP1 and CFP3 were the most significant throughout when established by 

ANOVA1, Kruskal-Wallis and Glass’s ∆ Delta, Hedges gs and Cohen’s ds. 

Chaotic 

global 

metrics 

 

Welch 

 

MTM 

 

Yule-Walker 

 

PC1 PC2 PC1 PC2 PC1 PC2 

CFP1 0.097 -0.668 0.081 -0.674 0.020 0.601 

CFP2 -0.416 -0.273 -0.420 -0.259 -0.383 0.374 

CFP3 -0.136 -0.653 -0.147 -0.649 -0.161 0.559 

CFP4 0.442 -0.153 0.441 -0.160 0.462 0.222 

CFP5 0.453 -0.031 0.452 -0.039 0.406 0.282 

CFP6 0.440 -0.166 0.439 -0.171 0.474 0.175 

CFP7 -0.453 -0.037 -0.453 -0.031 -0.473 0.166 
Table 2: Principal component analysis for the three appropriate power spectra (Welch, MTM, and Yule-Walker). The component loadings were 

calculated for CFP1 to CFP7 for the 1000 RR-intervals of 35 malnourished children. A grid of 7-by-35. Only the first two components, principal 

component one (PC1) and principal component two (PC2) were calculated as a consequence of steep scree plots for all three power spectral 

derivatives. Periodogram, Burg and Covariance are not calculated as they don’t perform appropriately on the ANOVA1, Kruskal-Wallis and Glass’s 

∆ Delta, Hedges gs and Cohen’s ds statistical tests. 
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For the Welch power spectra CFP1 has the first principal component (PC1) (0.097) and the second principal 

component (PC2) (-0.668); but, CFP3 has the PC1 (-0.136) and the PC2 (-0.653). Only the first two components need 

to be considered because of the steep scree plot. The cumulative influence as a percentage is 69.4% for the PC1 and 

99.9% for the cumulative total of the PC1 and PC2. The proportion of PC2 is 30.5%. CFP3 is the most robust overall 

combination of chaotic globals with regard to influencing the correct outcome. 

For MTM power spectra CFP1 has the PC1 (0.081) and the PC2 component (-0.674); but, CFP3 has the PC1 (-0.147) 

and the PC2 (-0.649). Only the first two components need to be considered owing to the equally steep scree plot. The 

cumulative influences are comparable to the Welch power spectra above. Once more, CFP3 is the preferred overall 

chaotic global combination with regard to manipulating the exact outcome. 

Regarding the Yule-Walker power spectrum CFP1 has the PC1 (0.020) and the PC2 (0.601); whereas, CFP3 has the 

PC1 (-0.161) and the PC2 (0.559). Only the first two components need to be considered as a consequence of the steep 

scree plot. The cumulative influence as a percentage is 57.6% for the PC1 and 96.8% for the cumulative total of the 

PC1 and PC2. The proportion of PC2 is 39.2%. So, CFP3 is again the best and most robust overall chaotic global 

combination with regard to influencing the correct outcome. 

Performing PCA was unnecessary for the Burg, covariance, and periodogram power spectra results. The Burg and 

covariance power spectra responded incorrectly when significant achieving positive effect sizes. Or as in the case of 

the periodogram, only one result was significant and, thus multivariate analysis is unsuitable. PCA indicates that CFP3 

is the most influential metric for Welch, Yule-Walker, but particularly the MTM power spectra. They all have steep 

scree plots and similar PC1 and PC2, under default conditions. 

Thomson’s nonlinear combinations, DPSS, and RR length 

Now we assess the consequence that the DPSS has on the significance of the results. We enforce the effect size 

Cohen’s ds here, as when we calculate the ANOVA1 and Kruskal-Wallis for Welch, MTM, and Yule-Walker they all 

perform identically with p < 0.01 (or, < 1%). So, it is impossible to distinguish which values are optimal. The range 

of statistical outcomes is unable to discriminate between their results. 

If we observe the results (Figure 2), we recognize that all six charts are similar. These are assessing significance by 

Cohen’s ds. CFP1 and CFP3 for the three combinations of Thomson’s nonlinear combinations are comparable. The 

‘adaptive’, ‘eigen’ and ‘unity’ alternatives have insignificant effects. 

Nonetheless, it is imperative to know that for time-series shorter than 400 RR-intervals (RR < 400) the outcomes vary 

widely for the DPSS from 2 to 13. The boxplots whiskers are wide and results don’t converge. Yet, for RR-intervals 

greater than 400 (RR > 400) the Cohen’s ds values are similar for all DPSS values and the whiskers of the boxplots 

are narrow. This indicates that DPSS is unimportant regarding the statistical outcomes with time-series greater than 

400 RR-intervals. With the exception of limited results in the short time-series; the RR < 400 zone, all values for 

Cohen’s ds are negative between -0.75 and -1.6. They give medium to very large effect sizes. 

So, a decrease in chaotic response is achieved when comparing the controls to the malnourished children. It is similarly 

important to realize that the values are maximized for Cohen’s ds at 400 RR-intervals. At RR > 400, up to RR-intervals 

of 1000, their significance gradually decreases. They become less negative. Therefore, it is the case that the results 

are most significant for short to medium length time-series, less so for longer (between 400 and 1000 RR-intervals). 

They do not converge statistically at lengths of RR < 400. So, it is practical to evaluate results for time-series of 400 

RR-intervals. This attains optimal significance. 

When we calculate the effect sizes under default conditions (Table 1) the values for Yule-Walker are greatest (Hedges 

gs and Cohen’s ds), then MTM (Glass’s ∆ Delta), and finally, Welch power spectrum. Yet, MTM has further 

parameters that can be adjusted to give results of potentially greater significance. It is a much more flexible power 

spectrum algorithmically. When we set Thomson’s nonlinear combination to ‘adaptive’, DPSS to 3, and enforce 400 
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RR intervals as for CFP3 (see Table 3), MTM outperforms all the other combinations (Cohen’s ds =-1.56755, very 

large effect size). CFP1 performs less well on the MTM under identical conditions. Thus, CFP3 via MTM is the best 

mathematical marker. It outperforms the other five power spectra on Cohen’s ds. Cohen’s ds is the most reliable 

statistical test which can be applied under these circumstances. 

 
Figure 2: The boxplots of CFP1 (upper) and CFP3 (lower) for the Cohen’s ds effect size test of significance for the controls vs. malnourished 

children (both n = 35). These are per DPSS values from 2 to 13 in increments of one, and for the length of time-series from 50 to 1000 RR-intervals 

in intervals of 50. The three Thomson’s nonlinear combinations are applied: ‘adaptive’ (upper and lower left), ‘eigen’ (upper and lower middle), 

and ‘unity’ (upper and lower right). 

 

DPSS 

value 

CFP1  CFP3 

Cohen’s ds 

adapt 

Cohen’s ds 

eigen 

Cohen’s ds 

unity 

Cohen’s ds 

adapt 

Cohen’s ds 

eigen 

Cohen’s ds 

unity 

2 -1.23403 -1.22723 -1.22899 -1.56128 -1.55647 -1.55763 

3 -1.24385 -1.24108 -1.24142 -1.56755 -1.56545 -1.56529 

4 -1.23164 -1.23128 -1.23082 -1.55432 -1.55373 -1.55299 

5 -1.22131 -1.23150 -1.22919 -1.54269 -1.55501 -1.55197 

6 -1.22210 -1.23206 -1.23095 -1.54281 -1.55485 -1.55320 

7 -1.21711 -1.22518 -1.22390 -1.53767 -1.54702 -1.54528 

8 -1.22794 -1.23059 -1.23063 -1.55068 -1.55353 -1.55334 

9 -1.22783 -1.23059 -1.23061 -1.54939 -1.55307 -1.55275 

10 -1.22549 -1.22786 -1.22757 -1.54662 -1.54952 -1.54881 

11 -1.22924 -1.22787 -1.22771 -1.54976 -1.54872 -1.54809 

12 -1.22594 -1.22575 -1.22544 -1.54682 -1.54690 -1.54626 

13 -1.22935 -1.22629 -1.22622 -1.55053 -1.54757 -1.54721 
Table 3: The properties of the discrete prolate spheroidal sequences (DPSS) value (2 to 13) on the effect size Cohen’s ds when comparing chaotic 

globals CFP1 and CFP3 for control subjects and malnourished children (both n = 35). The remaining parameters are set as (a) sampling frequency 

of 1 Hz; (b) FFT is the larger of 256 and the next power of two greater than the length of the segment; (c) Thomson's nonlinear combination methods 

applied (‘adapt’, ‘eigen’ and ‘unity’). 400 RR-intervals were assessed throughout. 
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Discussion 

We assessed the responses of chaotic global metrics in malnourished children related to their control group. The 

overall aim was to achieve an improved mathematical marker to distinguish between them. In a preceding study by 

Barreto et al. [1], CFP1 was indicated as the most robust function and CFP3 was the best overall statistically. Still, 

that study only applied the one power spectrum, MTM. So, here we attempted to verify which power spectra would 

perform optimally. We imposed six power spectra. Once the MTM power spectrum had been confirmed to be the best 

performer of the six we adjusted its properties. These data support autonomic impairment in the population evaluated. 

An earlier study evaluated the impact of six power spectra in an analogous manner in subjects with T1DM [27]. Most 

of the conditions were identical with the exception, that with the Yule-Walker, Burg, and covariance power spectra 

the orders were set at 4. In this study with malnourished children and with these autoregressive power spectra we set 

the order to 16. When we assessed the six power spectra here, MTM was the most significant. This was similarly the 

case with the type 1 diabetic mellitus subjects. In this study, under default conditions, CFP3 was the best marker on 

the basis of five statistical tests and multivariate analysis. MTM is a useful power spectrum to impose as it can be 

adjusted to reduce spectral leakage. This deficit is one weakness of the other five techniques, particularly the 

autoregressive power spectra e.g., Burg, Yule-Walker, and covariance. A further deficit is that they are 

computationally expensive to compute compared to those founded on FFTs e.g., Welch, MTM, and periodogram. 

To further refine the results and attempt greater significance we varied three other parameters for the MTM spectrum. 

These were Thomson’s nonlinear combination methods, DPSS, and the length of time-series. Here the intention was 

to improve the statistical outcomes. A previous study assessed this with T1DM subjects [59]. CFP3 via MTM was 

once more revealed to be a better marker than CFP1. No other power spectra were assessed. Then, in that study, the 

range of time-series was shorter at 500 to 1000 RR-intervals. Also, only ANOVA1 and Kruskal-Wallis statistical tests 

were executed. So, overall, it was problematic to identify the best adjustments to enhance performance. Without the 

effect sizes, the range of statistical outcomes is unable to differentiate straightforwardly between the two groups. In 

this study we computed three effect sizes; Glass’s ∆ Delta, Hedges gs, and Cohen’s ds. Thomson’s nonlinear 

combinations were set to ‘adaptive’ and DPSS to 3; as these were revealed to be the best combinations. Yet, the 

optimal length of the time-series was 400 RR intervals. This did not appear to be the trend in the previous study with 

T1DM subjects, but then, in that case, 500 RR intervals was the shortest, so cannot be confirmed. 

Ultra-short time series have been assessed in obese youths [31]. In that study CFP1, CFP3 and CFP6 were all 

significant. But, again CFP3 performed best on Cohen’s ds. It is difficult to discriminate with the Kruskal-Wallis test 

of significance alone. They all represented an increased chaotic global response in the obese youth’s group, the 

opposite of here with malnourished children. Despite that, the results were achieved with 125 RR-intervals, but then 

only that length of time-series was assessed. Performing cubic spline interpolations [60] to increase the length of time-

series has repeatedly been demonstrated to be unimportant in improving the significance of the effect sizes (or, 

ANOVA1 and Kruskal-Wallis) between the groups. This was the case with obese youths [31] and those with T1DM 

[59]. 

The connection between malnourishment and complexity metrics is useful for ANS assessment and, indirectly, allows 

cardiovascular risk and dynamical disease evaluations. This is beneficial because HRV as a marker of ANS could be 

preferable to other neurological tests. It is easier and cheaper to administer, requiring less physician consultation time 

which is expensive. 

Conclusion 

CFP3 with MTM, 400 RR-intervals, Thomson’s nonlinear combination set to ‘adaptive’ and a DPSS of 3 is the best 

combination to discriminate between the control and malnourished children groups on the basis of RR-intervals. 

Malnourished children have a lower response to chaotic global metrics than the control group. Unexpectedly, if the 

length of the time-series is increased past 400 RR-intervals it is not always the case that the results are more significant 
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as was the case in the default condition. In the default scenario, MTM and Yule-Walker perform similarly on the 

ANOVA1, Kruskal-Wallis and effect size statistical tests. Increasing the number of subjects might improve the results, 

but increasing the time length could be detrimental. In summary, our results indicate increased cardiovascular risk in 

the examined malnourished children. 
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